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A B S T R A C T

PyFR is an open-source cross-platform computational fluid dynamics framework based on the
high-order Flux Reconstruction approach, specifically designed for undertaking high-accuracy
scale-resolving simulations in the vicinity of complex engineering geometries. Since the initial
release of PyFR v0.1.0 in 2013, a range of new capabilities have been added to the framework,
with a view to enabling industrial adoption of the capability. This paper provides details of those
enhancements as released in PyFR v2.0.3, explains efforts to grow an engaged developer and user
community, and provides latest performance and scaling results on up to 1024 AMD Instinct
MI250X accelerators of Frontier at ORNL (each with two GCDs), and up to 2048 NVIDIA
GH200 GPUs on Alps at CSCS.

PROGRAM SUMMARY
Program Title: PyFR
CPC Library link to program files:
Developer’s repository link: https://github.com/PyFR/PyFR
Code Ocean capsule:
Licensing provisions: BSD 3-clause
Programming language: Python (generating C/OpenMP, CUDA, OpenCL, HIP, Metal)
Nature of problem: Accurate and efficient scale-resolving simulation of industrial flows.
Solution method: Massively parallel cross-platform implementation of high-order accurate Flux Reconstruction schemes.

1. Introduction
Computational Fluid Dynamics (CFD) is used by high-value industries across the world to reduce costs and improve

product performance. The majority of industrial CFD is undertaken using Reynolds-Averaged Navier–Stokes (RANS)
simulations, which time-average unsteady phenomena, including turbulence, and replace the ‘missing physics’ with
a model. However, it is well established that RANS approaches have limited applicability when flow is separated
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and unsteady. To overcome this limitation, higher-fidelity scale-resolving methods can be used, such as Large Eddy
Simulations (LES), Implicit Large Eddy Simulations (ILES) and Direct Numerical Simulations (DNS), with DNS
being the most accurate; fully resolving all physics of the governing Navier–Stokes equations. However, the cost of a
scale-resolving simulation is typically orders-of-magnitude higher than that of a RANS simulation, and thus the use
of scale-resolving methods in industry has until recently been considered intractable.

Our vision with PyFR has been to develop and deliver an open-source Python framework based on the high-order
accurate Flux Reconstruction (FR) approach [1] that enables real-world scale-resolving simulations to be undertaken
in tractable time, at scale, by both academic and industrial practitioners—helping advance industrial CFD capabilities
from their current ‘RANS plateau’. It is one of several international efforts towards industrial adoption of scale-
resolving simulations, including Nektar++ [2, 3], hpMusic [4], HiPSTAR [5], and charLES (now acquired and
distributed for industrial usage by as Fidelity LES Solver by Cadence Inc) [6, 7].

The first version of PyFR—v0.1.0—was released in late 2013 [8]. It supported solving the compressible Euler and
Navier–Stokes equations on unstructured grids of hexahedral elements, and was able to target both conventional CPUs
and NVIDIA GPUs via a novel domain specific language based on Mako. In the past decade, there have been over
30 subsequent releases of PyFR, adding a wide range of new capabilities with a view to enabling industrial adoption,
culminating in the current release of PyFR v2.0.3 which is described in this paper.

2. Flux Reconstruction
The Flux Reconstruction (FR) approach [1] implemented in PyFR is a form of discontinuous spectral element

method [9, 10]. As a brief overview, consider the first-order hyperbolic conservation law

𝜕𝑢𝛼
𝜕𝑡

+ ∇ ⋅ 𝐟𝛼 = 0, (1)

where 𝛼 is the field variable index, 𝑢𝛼 = 𝑢𝛼(𝐱, 𝑡) are the conservative field variables, and 𝐟𝛼 = 𝐟𝛼(𝑢𝛼) are the fluxes of 𝑢𝛼 .
In order to solve Eq. (1) using FR in a domain 𝛀, one must tessellate the domain with 𝑁 non-overlapping conforming
elements 𝛀𝑛 as

𝛀 =
𝑁
⋃

𝑛=1
𝛀𝑛,

𝑁
⋂

𝑛=1
𝛀𝑛 = ∅, (2)

see, for example, Fig. 1. Without loss of generality, we assume in this example all 𝛀𝑛 are of the same type.
Each element 𝛀𝑛 can then be mapped to a reference element 𝛀̂ via a mapping function 𝑛 defined as

𝐱 = 𝑛(𝐱̃), 𝐱̃ = −1
𝑛 (𝐱),

and geometric Jacobian matrices can be defined from the mapping functions as

𝐉𝑛 = 𝐽𝑛𝑖𝑗 =
𝜕𝑛𝑖
𝜕𝑥̃𝑗

, 𝐽𝑛 = det 𝐉𝑛,

𝐉−1𝑛 = 𝐽−1
𝑛𝑖𝑗 =

𝜕−1
𝑛𝑖

𝜕𝑥̃𝑗
, 𝐽−1

𝑛 = det 𝐉−1𝑛 = 1
𝐽𝑛

.

For each 𝛀𝑛, these Jacobian matrices can be used to transform Eq. (1) into reference element space as

𝜕𝑢𝑛𝛼
𝜕𝑡

+ 𝐽−1
𝑛 ∇̃ ⋅ 𝐟𝑛𝛼 = 0 and 𝐟𝑛𝛼 = 𝐟𝑛𝛼(𝐱̃, 𝑡) = 𝐽𝑛(𝐱̃)𝐉−1𝑛 (𝑛(𝐱̃))𝐟𝑛𝛼(𝑛(𝐱̃), 𝑡), (3)

where 𝑢𝑛𝛼 and 𝐟𝑛𝛼 are the solution and flux in 𝛀𝑛, respectively, and ∇̃ = 𝜕∕𝜕𝑥̃𝑖.
We can proceed to define a set of solution points 𝐱̃(𝑢)𝜁 in the reference element (see Fig. 1), where 𝜁 is the solution

point index which satisfies 0 ⩽ 𝜁 < 𝑁 (𝑢) and𝑁 (𝑢) is the number of solution points in the reference element. Now a nodal
basis set 𝓁(𝑢)

𝜁 (𝐱̃) can be defined in the reference element, where the nodal basis polynomials 𝓁(𝑢)
𝜁 satisfy 𝓁(𝑢)

𝜁 (𝐱̃(𝑢)𝜎 ) = 𝛿𝜁𝜎
where 𝛿𝑖𝑗 is the Kronecker delta. We can also define a set of flux points 𝐱̃(𝑓 )𝜁 on the surface of the reference element
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(a)

(b) (c)

Figure 1: Example of an unstructured curved-element tetrahedral mesh around a sphere (a), fourth-order 𝛼-optimised
flux points for a tetrahedron (b), where yellow and red indicate doubly and triply collocated points, respectively, and
fourth-order 𝛼-optimised solution points for a tetrahedron (c).

(see Fig. 1), where 𝜁 is now the flux point index which satisfies 0 ⩽ 𝜁 < 𝑁 (𝑓 ) and 𝑁 (𝑓 ) is the number of flux points on
the surface of the reference element. These flux points are constrained such that flux points from adjoining elements
always conform at element interfaces.

The first step in the FR approach is to obtain the discontinuous solution at each flux point 𝑢(𝑓 )𝜎𝑛𝛼 from the solution
at the solution points 𝑢(𝑢)𝜁𝑛𝛼 as

𝑢(𝑓 )𝜎𝑛𝛼 = 𝑢(𝑢)𝜁𝑛𝛼𝓁
(𝑢)
𝜁 (𝐱̃(𝑓 )𝜎 ). (4)

The second step is to obtain a transformed common normal interface flux at each flux point 𝑓𝐶(𝑓⟂)
𝜎𝑛𝛼 from the

discontinuous solution at the flux point 𝑢(𝑓 )𝜎𝑛 , the discontinuous solution at the conforming flux point in the relevant
adjoining element 𝑢

′(𝑓 )
𝜎𝑛 , and the surface normal at the flux point 𝐧(𝑓 )𝜎𝑛 as

𝑓𝐶(𝑓⟂)
𝜎𝑛𝛼 = 𝔉𝛼(𝑢(𝑓 )𝜎𝑛 , 𝑢

′(𝑓 )
𝜎𝑛 , 𝐧̂(𝑓 )𝜎𝑛 ). (5)

where 𝔉𝛼 is e.g. an appropriate Riemann solver.
The third step is to calculate the transformed discontinuous flux at the solution points 𝐟 (𝑢)𝜎𝑛𝛼 from the solution at

solution points 𝐮(𝑢)𝜎𝑛𝛼 using the system flux function. These values can then be used to calculate the transformed normal
discontinuous flux at the flux points 𝑓 (𝑓⟂)

𝜎𝑛𝛼 as

𝑓 (𝑓⟂)
𝜎𝑛𝛼 = 𝐧(𝑓 )𝜎𝑛 ⋅ 𝐟 (𝑢)𝜁𝑛𝛼𝓁

(𝑢)
𝜁 (𝐱̃(𝑓 )𝜎 ). (6)
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Finally, the transformed divergence of the transformed continuous flux (∇̃ ⋅ 𝐟 )(𝑢)𝜁𝑛𝛼 can be obtained by propagating

the difference between 𝑓𝐶(𝑓⟂)
𝜎𝑛𝛼 and 𝑓 (𝑓⟂)

𝜎𝑛𝛼 at each flux point into the element using a flux correction function 𝐠(𝑓 )𝜎 , and
combining with values of 𝐟 (𝑢)𝜎𝑛𝛼 as

(∇̃ ⋅ 𝐟 )(𝑢)𝜁𝑛𝛼 =
[

∇̃ ⋅ 𝐠̃(𝑓 )𝜎 (𝐱̃)
{

𝔉𝛼𝑓
(𝑓⟂)
𝜎𝑛𝛼 − 𝑓 (𝑓⟂)

𝜎𝑛𝛼
}

+ 𝐟 (𝑢)𝜈𝑛𝛼 ⋅ ∇̃𝓁
(𝑢)
𝜈 (𝐱̃)

]

𝐱̃=𝐱̃(𝑢)𝜁

, (7)

which can then be used to update the solution at the solution points 𝑢(𝑢)𝜁𝑛𝛼 via a suitable explicit time integration scheme.

3. New Capabilities
3.1. Cross-Platform Performance

The cross-platform performance of PyFR is enabled through backends which can utilise various matrix multipli-
cation kernels and a Mako derived domain specific language (DSL) which achieves complete feature parity across all
backends, as per Fig. 2.

Backends. PyFR v0.1.0 had a C/OpenMP backend for CPUs and a CUDA backend for NVIDIA GPUs. However, since
2013 additional vendors have entered the high-end GPU market including AMD, Intel, and even Apple. As such, PyFR
v2.0.3 now contain an additional HIP backend for AMD GPUs, an OpenCL backend for all GPUs, and a Metal backend
for Apple GPUs.

DSL. The capabilities and performance of the DSL have been improved in PyFR v2.0.3. In particular, there is
language-level support for reductions. A kernel argument can now be annotated according to reduce(op) where op
is a reduction operator such as min. Whatever value the kernel assigns to this argument will then be automatically
and safely reduced with its current value in memory. On the performance side, the DSL is now capable of detecting
situations where read-only kernel arguments are likely to be subject to reuse. When running on GPU platforms, the
DSL will automatically take care of loading these arguments into shared memory. This helps to reduce pressure on the
L1 and L2 caches.

Matrix multiplications. Many operations within an FR time-step can be cast in the form of

𝗖 ← 𝗔𝗕 + 𝛽𝗖,

where 𝗔 is a constant operator matrix, 𝗕 is an input state matrix, and 𝗖 is an output state matrix. PyFR v0.1.0 simply
offloaded these operations to a platform-specific dense BLAS library such as cuBLAS or OpenBLAS. However, when
operating on elements with a tensor-product structure, the operator matrices can exhibit a significant degree of sparsity.
This can lead to suboptimal performance in cases where the arithmetic intensity of the operation is beyond that of the
underlying hardware.

This issue has been addressed by incorporating additional matrix-multiplication providers into PyFR v2.0.3. When
running on with the CUDA and HIP backends, PyFR v2.0.3 will use the GiMMiK [11] library to generate a suite
of bespoke fully-unrolled kernels for each 𝗔. During the code generation process, GiMMiK automatically elides
multiplications through by zero, thus reducing the arithmetic intensity of the operation. The generated kernels are then
competitively benchmarked against those provided by the dense BLAS library, with PyFR automatically selecting the
fastest kernel for each operation. This auto-tuning is performed autonomously by PyFR at run-time and does not require
any direction from the user. When running on CPUs, a similar result is accomplished through the use of libxsmm [12]
which includes its own built-in support for automatically choosing between dense and sparse kernels.

Finally, in situations where the flux points are a strict subset of the solution points, additional logic has been
incorporated into PyFR to avoid the need for multiplications entirely. This leads to further memory and memory
bandwidth savings.

Data layout. The primary data structure in PyFR is an 𝑚 by 𝑛 row-major matrix where, up to padding, 𝑚 is
proportional to the number of solution/flux points and 𝑛 is equal to the product of the number of elements and the
number of field variables. It follows that there is a degree of freedom regarding how these field variables are packed
along a row. This can be characterised by the stride Δ𝑗 between two subsequent field variables. The choice of Δ𝑗 = 1
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• Execute plugins for in-situ post processing

Translate 
templated code 
into low-level 
hardware specific 
code

Python Outer Layer
(Hardware Independent)

• Problem setup and I/O
• Outer ‘for’ loop schedules hardware specific kernels
• Distributed memory parallelism (MPI with CUDA and HIP awareness)

Matrix Multiply 
Kernels

• Data 
interpolation/
extrapolation 
etc.

Point-Wise 
Nonlinear Kernels

• Flux functions, 
Riemann 
solvers etc.

Metal for 
Apple GPUs

HIP for 
AMD GPUs

OpenCL for 
Intel GPUs

Task graph 
CUDA for 

NVIDIA GPUs

Compile, link, and load kernels at runtime Obtain Kernel

• Vendor BLAS
• libxsmm
• GiMMiKCache blocked

C/OpenMP 
for CPUs

Figure 2: Overview of how PyFR achieves cross-platform performance. New functionality is marked in blue.

(a) AoS. (b) SoA. (c) AoSoA(𝑘 = 3)

Figure 3: Data layout methodologies for packing multiple field variables into the rows of a matrix.

results in an array of structures (AoS) arrangement, Δ𝑗 = 𝑁𝐸 where 𝑁𝐸 is the number of elements results in a
structure of arrays (SoA) arrangement, and Δ𝑗 = 𝑘 results in a hybrid array of structure of arrays (AoSoA) approach.
An illustration of these arrangements can be seen in Fig. 3.

For simplicity, PyFR v0.1.0 used an SoA approach. However, although this structure is readily amenable to
vectorisation, it has some limitations. Firstly, the large stride between field variables decreases the efficiency of caches
since adjacent field variables are unlikely to reside in the same cache line. Secondly, it is not friendly to hardware
pre-fetchers: an SoA structure with 𝑣 field variables appears to a CPUs pre-fetcher like 𝑣 separate arrays. Since CPUs
are only capable of pre-fetching a finite number of data streams, this can lead to stalls. Finally, given a pointer to one
field variable at one point, it is not possible to access the next field variable unless one also knows 𝑁𝐸 . To avoid these
issues, PyFR v2.0.3 employs the more sophisticated AoSoA packing. The value of 𝑘 is chosen automatically by the
backend based on the vector length of the underlying hardware.

Additionally, when running on CPUs, PyFR v2.0.3 incorporates an additional level of blocking. Rather than
allocating a single row-major matrix with 𝑛 columns, the C/OpenMP backend instead allocates 𝑞 smaller matrices
each with ∼𝑛∕𝑞 columns. The value of 𝑞 is chosen to ensure that an entire block can easily remain resident in local
caches and serves to further improve data locality.

Task graphs. Strong scaling has also been improved by adding first-class support for task graphs. The idea is to exploit
the fact that PyFR, as with many scientific codes, repeatedly calls the same sequence of kernels. By treating each kernel
as a vertex in a graph and the dependencies between kernels as edges, it is possible—on an a priori basis—to form a
task graph corresponding to a single right-hand side evaluation. This has two key advantages:

1. It presents the underlying runtime with extra opportunities for extracting parallelism by enabling it to safely
identify kernels which can be run in parallel.

2. It enables a substantial reduction in interface overhead since, once constructed, task graphs can be launched with
just a single function call as opposed to one function call per kernel.

An example of a task graph for a 2D Navier–Stokes simulation on a mixed-element grid can be seen in Fig. 4.
Looking at the graph, we observe that there are four root nodes. As these root nodes are—by definition—independent,
it is possible for all four of the kernels to be executed in parallel. Similarly, we observe that the three bcconu boundary
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MEMCPY

(UtoU,24576)

4
intconu

5
bcconu

6
bcconu
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gradcorulin
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gradcorulin

13
gimmik_mm

14
gimmik_mm
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gimmik_mm
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gimmik_mm
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intcflux
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bccflux
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bccflux
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tfluxlin
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EMPTY

23
tfluxlin
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gimmik_mm

27
gimmik_mm
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gimmik_mm

25
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negdivconf

29
negdivconf

Quad kernels

Tri kernels

Interface kernels

Figure 4: A task graph generated by the NVIDIA cuGraphDebugDotPrint API for a 2D mixed-element Navier–Stokes
test case. Blue shading indicates kernels for quadrilateral elements, red shading kernels for triangular elements, and green
shading for interface kernels. The four root nodes of the graph are marked with red borders.

condition kernels are also independent, such that these can also be executed in parallel. Indeed, careful inspection of
the graph shows that there are always at least two kernels which may be executed at the same time. When exploited by
a backend, this parallelism can improve GPU utilisation which, in turn, leads to improved strong scaling.

On the CUDA backend, PyFR task graphs map directly onto native CUDA graphs. Since the NVIDIA A100
generation, there is hardware support for task graph acceleration, enabling further reductions in overhead. While HIP
does support task graphs, preliminary studies show their performance to be inferior to launching kernels directly. As
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// Kernel 1
for (int i = 0; i < n; i++)

a[i] += b[i];

// Kernel 2
for (int i = 0; i < n; i++)

a[i] += c[i];

(a) Without blocking; bandwidth ∼6𝑛.

// Blocking loop with b = block size
for (int j = 0; j < n; j += b) {

// Kernel 1
for (int i = j; i < j + b; i++)

a[i] += b[i];

// Kernel 2
for (int i = j; i < j + b; i++)

a[i] += c[i];
}

(b) With blocking; bandwidth ∼4𝑛.

Figure 5: Example of how cache blocking can be applied to a pair of array addition kernels. In the blocked version when
the second kernel updates a[i] it will hit in cache, thus saving a write to and read back from main memory.

such, task graphs on the HIP backend are emulated by submitting kernels to a stream in a serial fashion. A similar
approach is used on Metal. On OpenCL, task graphs are emulated using out-of-order queues and events. This enables
the runtime to identify and exploit inter-kernel parallelism but does not decrease API overhead.

To demonstrate the benefits of native task graphs, we consider the 2D Incompressible Cylinder Flow test case
2d-inc-cylinder available from the PyFR Test Case repository on GitHub. This is small mixed-element case has a
high API overhead, and without task graphs, the run-time on an NVIDIA V100 GPUs is 256 s. However, with task
graphs, this reduces to 122 s.

Cache blocking. A powerful means of reducing the memory bandwidth requirements of a code on conventional
CPUs is cache blocking [13]. The idea is to improve data locality by changing the order in which kernels are called.
An example of this can be seen in Fig. 5 which shows how a pair of array addition kernels can be rearranged to reduce
bandwidth requirements. A key advantage of cache blocking compared with alternative approaches, such as kernel
fusion, is that the kernels themselves do not require modification; all that changes is the arguments to the kernels.

Historically, cache blocking has not been viable for high-order codes due to the size of the intermediate arrays
which are generated by kernels. For example, an Intel Ivy Bridge CPU core from 2013 only has 256KiB of L2 cache
which is shared between executable code and data. As a point of reference, for the Euler equations, storing the solution
and flux for just eight ℘ = 4 hexahedra at double precision requires 160 kB. Since 2016, however, there has been a
marked increase in the size of private caches, with Intel Golden Cove CPU cores having 2MiB. The specifics involved
in cache blocking FR are detailed in [13, 14] and can improve performance by a factor of two. Within PyFR, cache
blocking is accomplished by calling auxiliary methods on task graphs stating which kernels in the graph are suitable
for blocking transformations. The interface also contains support for eliminating temporary arrays which can further
improve performance.

Multi-node capabilities. Distributed memory parallelism is accomplished via MPI using the mpi4py wrappers
[15, 16]. As the message format is standardised across all backends, it is possible for different ranks to employ different
backends, thus enabling heterogeneous computing from a homogeneous codebase [17]. In order to improve scalability,
the backend interface in PyFR v2.0.3 has been enhanced to allow backends to directly pass GPU device pointers to
MPI routines. As such, PyFR v2.0.3 is fully capable of exploiting GPUDirect RDMA on NVIDIA platforms via CUDA
Aware MPI, along with its analogue on AMD platforms via HIP Aware MPI. The impact of this technology depends
on both the underlying hardware and the degree to which a simulation is strong scaled. In the most extreme cases,
twofold performance improvements have been observed when running on clusters of NVIDIA A100 GPUs [18].

3.2. Numerical Stability
PyFR is often used to conduct under-resolved DNS (uDNS), also referred to as ILES of turbulent flow. On account

of this under-resolution, the FR scheme is subject to aliasing-driven instabilities, which can cause the simulation to
diverge [19]. Additionally, FR schemes exhibit instabilities when solutions contain discontinuities such as shocks.
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PyFR v0.1.0 had no specialised capabilities for handling either scenario, beyond simply increasing grid resolution.
However, as of PyFR v2.0.3, there are now four separate stabilisation strategies available.

Modal filtering. The simplest stabilisation technique in PyFR v2.0.3 is modal filtering, wherein high-order modes
of the solution are periodically filtered as outlined in [10]. This approach is conservative and numerically inexpensive.
However, it is an indiscriminate approach - with the filtering applied uniformly across the domain irrespective of
whether it is required, and it exposes several free parameters including the filter strength, filter frequency and cut-off
modes.

Anti-aliasing. As noted in [19], the origin of aliasing-driven instabilities is the use of a collocation-type projection of
the fluxes. PyFR v2.0.3 resolves this issue by using quadrature to perform a least-squares projection of the flux instead.
To do this, PyFR employs a series of state-of-the art quadrature rules generated using Polyquad [20], which out-perform
those in literature. Although computationally expensive relative to simply performing a collocation projection of the
fluxes, studies have shown the results to be markedly superior to those produced by modal filtering [21].

Artificial viscosity. Primarily intended for shock capturing, artificial viscosity is another stabilisation approach
provided by PyFR v2.0.3, which dynamically adds extra viscosity into elements whose solutions are exhibiting
Gibbs-type phenomena. Based around the widely adopted approach of [22], the method is functional but, as with
modal filtering, requires a degree of parameterisation. Additionally, whilst the additional kernels are not particularly
expensive—at least within the context of an advection-diffusion type problem such as the Navier–Stokes equations—
the process of adding viscosity can have a negative impact on the maximum stable explicit time step. As such, the
overall cost of the approach can be high.

Entropy filtering. The final approach provided by PyFR v2.0.3 for stabilisation and shock capturing is entropy
filtering [23–26]. This is based around selectively applying a modal filter to elements which violate positivity of density,
positivity of pressure or a minimum entropy condition. The filter strength is determined iteratively on a per-element
basis, with the goal being to apply as little filtering as possible. As the indicators for instability are physics-based,
this method does not typically require any explicit parameterisation. The utility of the approach is demonstrated in
the 2D Double Mach Reflection test case 2d-double-mach-reflection and the 2D Viscous Shock Tube test case
2d-viscous-shock-tube available from the PyFR Test Case repository on Github.

3.3. Mixed Elements and Domain Decomposition
PyFR v0.1.0 only included support for three element types: quadrilaterals and triangles in two dimensions and

hexahedra in three dimensions. Given the difficulties of all-hexahedral meshing around complex geometries, this
represented a significant limitation. PyFR v2.0.3 addresses this limitation by adding in complete support for prisms
and tetrahedra and partial support for pyramids. Specifically, the pyramid support requires that the quadrilateral base
be affine. Given that a major application for pyramids is as a transition layer between a tetrahedral near-field and a
hexahedral far-field, this restriction is relatively minor.

One practical complication which arises when running on mixed grids is domain decomposition. The relative
performance of different element types is affected by around half a dozen simulation parameters including: the
polynomial order, location of solution and flux points and use of anti-aliasing, to name but three. A consequence
of this is that when partitioning a grid, it is not possible to employ a single set of element weighting factors. Employing
incorrect weighting factors can lead to load imbalances which negatively impact strong scaling. Compared with v0.1.0,
PyFR v2.0.3 contains two major improvements in this area.

Firstly, whereas v0.1.0 required grids to be partitioned by the mesh generation software, v2.0.3 includes built-in
support for partitioning and re-partitioning both mesh and solution files. This is accomplished by having PyFR call
out to the METIS [27] and SCOTCH [28] libraries. Using this functionality, it is relatively simple to experiment
with different weightings and change them in concert with the simulation parameters; for example, when restarting a
simulation at a higher polynomial order, this functionality can be used to appropriately re-weight the mesh. Moreover,
to aid this process, PyFR also includes support for tracking MPI wait times. This information can be used to identify
load imbalances between domains, which the user can then employ to derive more appropriate weights.

Secondly, there is also support for balanced partitioning wherein PyFR attempts to assign the same number of
elements of each type to each domain. This ensures optimal load balancing irrespective of the relative performance

: Preprint submitted to Elsevier Page 8 of 20

https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-double-mach-reflection
https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-viscous-shock-tube


PyFR v2.0.3

(a) Weighted. (b) Balanced.

Figure 6: Partitionings of a mixed grid with a quadrilateral boundary layer and triangular far-field partitioned into eight
parts. For the weighted strategy, each quadrilateral was assigned 3∕2 the weight of a triangle.

differential between element types. However, as element types are not uniformly distributed throughout the domain—
for example one might have a prismatic boundary layer and a tetrahedral wake—balanced partitioning can lead to
partitions becoming non-contiguous when the number of partitions is large. Examples of weighted and balanced
partitioning can be seen in Fig. 6 for the 2D Incompressible Cylinder Flow test case 2d-inc-cylinder available
from the PyFR Test Case repository on GitHub.

3.4. Curved Elements
To realise the benefits of high-order schemes, it is necessary to employ grids which, by finite volume standards,

are relatively coarse. In order to still accurately represent the underlying geometry, it is therefore important for the
elements themselves to be curved. This is accomplished by associating metric terms—which take the form of a 2 × 2
or 3 × 3 matrix—within each element.

PyFR v0.1.0 employed the so-called cross-product metric. However, with this approach, the polynomial order of
the spatial metric is twice that of the shape function for curved grids—possibly exceeding the order of the solution
basis. If this is the case, then the metric terms may not be discretised accurately due to truncation and aliasing errors. In
particular, the divergence of the approximated metric terms may become non-zero, which results in a lack of free-stream
preservation, i.e. the solver cannot maintain a uniform free-stream flow solution.

To overcome this issue, PyFR v2.0.3 instead employs the conservative metric [29, 30], which preserves a uniform
free-stream flow even when discretised. Specifically, this approach constructs the metric terms as the curl of the
function, thus ensuring they are always divergence-free irrespective of any errors in the function approximation. The
approach greatly increases the robustness of PyFR when running on curved grids. An example of its impact can be
seen in Fig. 7.

Furthermore, in many real-world grids, only elements in and around the boundary layer are actually curved. PyFR
v2.0.3 takes advantage of this fact by identifying linear elements and, in lieu of computing metric terms for each solution
point on an a priori basis, instead determines them on the fly based off the geometry of the element. This can lead to
a substantial saving in memory bandwidth. For example, in a ℘ = 4 hexahedral element there are (℘ + 1)3 = 125
solution points and hence 32 × 125 = 1, 125 metric terms. However, if the element is linear, then the metric terms are
entirely determined by the corner vertices which only involve 3 × 8 = 24 terms.

3.5. Adaptive Time Stepping
When using explicit time stepping, the run-time of a simulation is directly proportional to the time step size.

However, for non-linear problems, it can be challenging to accurately estimate the maximum stable step size. PyFR
v2.0.3 avoids these issues by including support for low storage Runge–Kutta methods with embedded pairs. These
make it possible to inexpensively obtain an estimate for the numerical error incurred when taking a time step [31].
Once suitably normalised, this error is then used to decide if a time step should be accepted or rejected. Moreover, it
is also be used to adapt the step size; increasing for accepted steps and decreasing for rejected steps.

3.6. Incompressible Euler and Navier–Stokes
PyFR v0.1.0 included a compressible Euler and Navier–Stokes solver. In PyFR v2.0.3, support has also been added

for the incompressible Navier–Stokes equations. This is accomplished via a combination of the artificial compressibility
method of [32] with the dual-time approach of [33]. The result is an iterative scheme which builds extensively upon the
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(a) Cross-product metric as used in PyFR v0.1.0. (b) Conservative metric as used in PyFR v2.0.3.

Figure 7: Simulation of free-stream flow using second-order solution polynomials on a cubically-curved tetrahedral mesh
with cross-product metric as used in PyFR v0.1.0 (a), and conservative metric as used in PyFR v2.0.3 (b).

fast residual evaluation capability of PyFR. Convergence is accelerated through a combination of polynomial multigrid
[34] and variable local time stepping [35].

3.7. File Formats
The mesh and solution file formats for PyFR v0.1.0 were based around NumPy .npy and .npz files. Although

simple to read and write from Python, they are difficult to access from other environments. Moreover, the formats
themselves had no provisions for parallel I/O. For these reasons, PyFR v2.0.3 employs a new set of file formats based
around the industry-standard HDF5 [36, 37]. A key advantage of the HDF5 format is its hierarchical nature and the
ability to attach arbitrary attributes to most data sets. Moreover, data arrays stored by PyFR use 64-bit rather than 32-bit
integers. This enables a partition to have in excess of four billion elements and serves to further future-proof the format
for at least the next decade.

To aid in reproducibility, PyFR v2.0.3 solution files embed all of the configuration files that have been employed in
the simulation up until the current time. This makes it possible to account for the common situation wherein a simulation
is started with one configuration file, run for a period of time, and then restarted with a different configuration.

Output format support has also been enhanced since PyFR v0.1.0. Specifically, PyFR v2.0.3 now supports exporting
high-order VTU files. This enables the high-order nature of the solution to be preserved throughout more of the post-
processing pipeline. Furthermore, there is also support for generating parallel VTU files which can be more efficient
in multiprocessing environments.

3.8. Plugin Architecture
The PyFR plugin infrastructure provides a lightweight means of adding new capabilities to the code base. Written

in pure Python, plugins are capable of adding new command line arguments, periodically post-processing the solution,
and adding source-terms to the solver. Examples of a selection of plugins provided with PyFR v2.0.3 are detailed
below.

Point sampling. The soln-plugin-sampler is capable of periodically sampling a set of points in the domain. At
start-up, the plugin automatically determines which element each sample point is inside, and then performs a series of
Newton iterations to invert the physical-to-reference space mapping.
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Time averaging. The soln-plugin-tavg computes the time-average of one or more arbitrary functions. The
functions, which are specified in the configuration file, can be parameterised by both the primitive variables and
gradients thereof. Beyond computing time-averages, the plugin also computes variances, which can be used for the
purposes of uncertainty quantification. Command line support is also included for merging together multiple time-
average files. This is particularly useful in environments where there is a limit on job run time.

Force calculation. The soln-plugin-fluidforce can be used to compute the net force on boundaries which, in
turn, can be used to obtain aerodynamic quantities such as lift and drag. The plugin breaks out separately the pressure
and viscous components of the recorded forces.

Turbulence generation. The solver-plugin-turbulence implements the synthetic eddy method of [38, 39], which
allows turbulence to be injected into any portion of the domain. Specifically, isotropic eddies are injected via a source
term formulation, where the turbulence intensity and length scale of the eddies can be specified. The implementation
is designed to scale efficiently and minimise memory bandwidth requirements. Specifically, by pre-computing and
caching element intersections of every injected eddy before the simulation starts, the cost of the implementation is
able to scale as the number of eddies intersecting an element at a given time—which for sensible grid resolutions
will remain small—as opposed to scaling with the overall number of injected eddies, which can be substantial for
large domains and small turbulent length scales. Additionally, the implementation also innovates by passing single
unsigned 32-bit integer seeds to define multiple characteristics of a given eddy. These are then unrolled by a device
side implementation of a PCG random number generator [40] to produce the actual random characteristics of the eddy.
This saves memory bandwidth cf. pre-computing random eddy characteristics a priori and passing them as an array of
(potentially 64-bit) floats.

In-situ visualisation. The soln-plugin-ascent provides in-situ visualisation capabilities and is powered by the
lightweight Ascent library [41]. Using the plugin, it is possible to produce complex renderings of the current
simulation state without having to write any intermediate files to disk. This enables efficient visualisation of large-scale
simulations, for which writing solutions to disk for after-the-fact post-processing is unfeasible.

4. Developer and User Community
Over the past decade, an international community of developers and users has grown around PyFR, drawn from

across academia and industry. Key to this growth has been the open-source nature of PyFR, which removes many
international and inter-institutional barriers to collaborative code development practices. Code development has also
been supported at a technical level by hosting the code base in a Git repository on GitHub, which provides a wide
range of tooling and helps define best-practice collaborative processes. Also of importance has been maintaining
comprehensive and up-to-date documentation using Sphinx, which is auto-deployed to Read the Docs on each release,
as well as providing developer and user support via a forum hosted on Discourse. Finally, in 2020, we launched a
virtual PyFR seminar series on Cassyni, which comprises invited talks and discussions on a range of topics related to
the theory of high-order FR schemes, their implementation in PyFR and their application to industrially relevant flow
problems.

Our user base has successfully applied PyFR to a wide range of fundamental, applied, and industrial flow problems,
including studies of flow over turbine cascades [42, 43] with MTU Aero Engines (see Fig. 8), flow over high-rise
buildings [44] with Arup (see Fig. 9), flow over Martian rotorcraft aerofoils [45, 46] with NASA (see Fig. 10), flow over
supersonic re-entry capsules [47] led by NASA, flow over projectiles [48] led by the Agency for Defense Development
in South Korea, flow over wind turbines [49, 50], and flow in thermoacoustic engines [51, 52], as well as studies of
airfoil noise reduction [53, 54], flow control [55, 56], wall roughness [57], the Coanda effect [58], surrogate model
development [59, 60] and fundamental aspects of channel flow [56, 61]. More recently, PyFR has also been used to
enable, for the first time, ILES-based optimisation of turbine cascades [62] and DNS-based optimisation of Martian
rotorcraft aerofoils [63].
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Figure 8: Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity magnitude above the suction side of an
MTU-T161 low pressure turbine blade obtained using the compressible Navier–Stokes solver in PyFR. Image is from Fig.
12 of Iyer et. al [43]. Copyright Iyer et al. Reused with permission.

Figure 9: Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity magnitude around a model high-rise
building obtained using the incompressible Navier–Stokes solver in PyFR. Image is from Fig. 9 of Giangaspero et. al [44].
Copyright Giangaspero et al. Reused with permission.
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Figure 10: Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity magnitude around a triangular aerofoil
for a Martian helicopter obtained using the compressible Navier–Stokes solver in PyFR. Image is from Fig. 10 of Caros et.
al [64]. Copyright Caros et al. Reused with permission.

: Preprint submitted to Elsevier Page 13 of 20



PyFR v2.0.3

5. Accuracy, Performance, and Scaling
5.1. Accuracy

To demonstrate the accuracy of PyFR v2.0.3 for high-speed flows, we consider a supersonic Taylor–Green vortex
test case at a Mach number of 1.25 and a Reynolds number of 1, 600, which was studied in Lusher and Sandham
[65] and used to benchmark the accuracy and shock-resolving capabilities of several solvers in Chapelier et al. [66].
Specifically, we solve the compressible Navier-Stokes equations in a domain −𝜋 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝜋, subject to the following
initial conditions,

𝑢(𝑡 = 0, 𝐱) = sin(𝑥) cos(𝑦) cos(𝑧), (8a)
𝑣(𝑡 = 0, 𝐱) = − cos(𝑥) sin(𝑦) cos(𝑧), (8b)
𝑤(𝑡 = 0, 𝐱) = 0, (8c)

𝑝(𝑡 = 0, 𝐱) = 𝑝0 +
1
16

[cos(2𝑥) + cos(2𝑦)] [2 + cos(2𝑧)] , (8d)

𝜌(𝑡 = 0, 𝐱) = 𝑝(𝑡 = 0, 𝐱)∕𝑝0, (8e)

where 𝑝0 and the reference dynamic viscosity were selected to achieve the desired Mach and Reynolds numbers based
on length, velocity and density scales of unity, and a dynamic viscosity computed using Sutherland’s law with a
reference temperature of 273K [67]. For comparison with the results in Chapelier et al. [66], the simulations were
performed using computational meshes consisting of 163, 323, 643 and 1283 hexahedral elements, with a third-order
polynomials approximating the solution within each element (corresponding to 643, 1283, 2563 and 5123 DoFs,
respectively). Gauss–Legendre–Lobatto flux and solution points were used, and entropy filtering was employed as
a shock capturing approach.
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(a) Enstrophy. (b) Schlieren.

Figure 11: Plot of enstrophy as a function of time (left) and a Schlieren-type representation of the density gradient norm
at 𝑡 = 6 (right) for the supersonic Taylor–Green vortex case computed with 𝑁 = 1283 hexahedral elements (5123 DoFs),
along with the reference data of Chapelier et al. [66].

Fig. 11 shows solenoidal dissipation (enstrophy), defined as

𝜀𝑠 =
1

(2𝜋)3 ∫

𝜋

−𝜋 ∫

𝜋

−𝜋 ∫

𝜋

−𝜋
𝜇𝜔𝜔𝜔 ⋅𝜔𝜔𝜔 d𝑥d𝑦d𝑧, (9)

as a function of time, as well as a Schlieren-type representation of the density gradient norm at 𝑡 = 6 for a case
computed with 𝑁 = 1283 hexahedral elements (5123 DoFs). The predicted enstrophy profiles are found to be in
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Table 1
Summary of the solvers and numerical methods used for comparison.

Solver Numerical method Order of accuracy Shock capturing method

PyFR Flux Reconstruction 4 Entropy filter
CODA [68] Modal Discontinuous Galerkin 4 Artificial viscosity
FLEXI [69] Nodal Discontinuous Galerkin 4 Subcell finite volume
SD3D [70] Spectral difference 4 Artificial viscosity

OpenSBLI [71] Finite difference 6 Targeted ENO (TENO)

excellent agreement with the reference data of Chapelier et al. [66], computed using a highly resolved (20483 DoFs)
high-order finite difference targeted ENO (TENO) scheme, indicating that PyFR can accurately resolve small-scale
turbulent flow structures in supersonic flows. This test case allows for further comparison against the results of various
solvers presented in Chapelier et al. [66]. In particular, we compare to similar discontinuous finite element-type schemes
(e.g., Discontinuous Galerkin, spectral difference, etc.) with identical mesh resolution and approximation order, the
details of which are summarized in Table 1, as well as the high-order finite difference TENO scheme which was used
to compute the reference results.

Fig. 12 shows dilatational dissipation, defined as

𝜀𝑑 = 4
3(2𝜋)3 ∫

𝜋

−𝜋 ∫

𝜋

−𝜋 ∫

𝜋

−𝜋
𝜇 (𝛁 ⋅ 𝐮)2 d𝑥d𝑦d𝑧, (10)

as a function of time for cases computed using 643, 1283, 2563 and 5123 DoFs in comparison to the results of the solvers
in Chapelier et al. [66]. The simulations from PyFR generally show less shock dissipation, resulting in dilatational
dissipation profiles which are closer to the reference data for a given resolution, indicating that the entropy filtering
shock capturing approach does not introduce excessive numerical dissipation and can sharply resolve shock profiles.

5.2. Performance and Scaling
PyFR has previously been used to undertake petascale simulations on a range of the world’s largest GPU

supercomputers, including Piz Daint at CSCS and Titan at ORNL. Overall performance and strong and weak scaling
has been demonstrated previously in this context, and indeed simulations undertaken with PyFR were shortlisted for
the Gordon Bell Prize in 2016 [72], achieving 13.7 DP-PFLOP/s (58 % of theoretical peak) using 18,000 NVIDIA
Tesla K20X GPUs on Titan.

To demonstrate the performance and scaling characteristics of PyFR v2.0.3, we consider a subsonic version of the
Taylor–Green vortex test case described above, run with double precision arithmetic on Frontier at ORNL using AMD
Instinct MI250X accelerators, and on Alps at CSCS using NVIDIA GH200 GPUs. For this case, the reference pressure
was modified to achieve a Mach number of 0.08, and the dynamic viscosity was set to be constant. The computational
mesh consisted of 13, 891, 500 tetrahedral elements, with seventh-order solution polynomials used to represent the
solution within each element, and alpha-optimised flux and solution points were employed. Fig. 13 plots enstrophy as
a function of time for a case run on 512 AMD Instinct MI250X accelerators of Frontier (each with two GCDs). Results
are found to be in excellent agreement with the reference data of van Rees et al. [73].

Table 2 and Table 3 present strong scaling of the test case on Frontier and Alps, respectively, where we note that on
Frontier PyFR was run without HIP-Aware MPI, whereas on Alps, PyFR was run with CUDA-Aware MPI. In terms of
scaling, we observe that at 2048 ranks, both platforms deliver similar scalability numbers. However, on account of the
superior baseline performance, the NVIDIA system is transferring ∼3.7 times more data over the interconnect. Given
both systems make use of the Cray Slingshot interconnect, this suggests that the network is not the limiting factor on
Frontier. Rather, it is more likely related to our inability to run with HIP-aware MPI on Frontier, and the inability of
PyFR to employ native HIP graphs due to unresolved issues in the HIP runtime.

In terms of absolute performance, we note that a single NVIDIA GH200 is ∼3.7 times faster than one GCD of
an AMD MI250X. A substantial portion of this can be explained by the differences in peak memory bandwidth. A
GH200 uses HBM3 memory with a peak bandwidth of 4TiB / s, whereas the MI250X uses HBM2e memory with
a peak bandwidth per-GCD of 1.6TiB / s. This gives a ratio of 2.5. Moreover, micro-benchmarks on the MI250X
indicate that peak bandwidth is only reliably achieved for kernels with a 1:1 read-to-write ratio. Outside of this regime,
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Figure 12: Dilatational dissipation as a function of time for the supersonic Taylor–Green vortex case computed with varying
mesh resolution in comparison to the results of the solvers in Chapelier et al. [66].

bandwidths closer to ∼1.2TiB / s are more commonly observed. Such a discrepancy is not observed on NVIDIA
hardware, however. Accounting for this gives us a revised performance ratio of ∼3.3 which is similar to what is
actually observed. The remaining performance differences are likely due to the superior caching setup of the NVIDIA
GPU which has—in the absence of shared memory allocations—some 208KiB available per SM, whereas AMD only
provides 16KiB per CU. Similarly, whereas NVIDIA provide 50MiB of shared L2 cache, AMD only provide 8MiB.
These caches are important for the interface kernels which have an irregular memory access pattern.

Finally, we can make a comparison between absolute performance almost a decade ago using PyFR v0.2.2
on an NVIDIA K40c GPU [17] with current absolute performance. Specifically, data from Table 6 of [17] for a
tetrahedrally-dominated mesh with fourth-order solution polynomials in each element gives an absolute performance
of 0.122GDoF/s per K40c GPU, whereas the 16 rank case from Table 3 here gives an absolute performance of
6.004GDoF/s per GH200 GPU. This leads to an absolute performance improvement ratio of 49.2, accounting for the
totality of both hardware and software improvements over the period, and where we note the ratio is conservative since
use of seventh vs. fourth order solution polynomials necessitates substantially more FLOPs/DoF. This conservative
estimate of an almost 50× performance increase over the last decade constitutes a substantial step towards the industrial
adoption of scale-resolving simulations.
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Figure 13: Plot of enstrophy as a function of time for the subsonic Taylor–Green vortex case run with PyFR on 512 AMD
Instinct MI250X accelerators of Frontier (each with two GCDs), along with the reference data of van Rees et al. [73].

Table 2
Strong scalability of PyFR on Frontier for the Taylor–Green vortex test case using compressible Navier–Stokes solver on
a mesh with 12 × 1053 = 13, 891, 500 tetrahedral elements and seventh-order solution polynomials used to represent the
solution within each element. The speedup is relative to 8 AMD Mi250X accelerators each with two GCDs. HIP-Aware
MPI was not employed.

# Ranks 16 32 64 128 256 512 1024 2048
GDoF/s 26.21 50.87 98.70 193.37 369.10 669.80 1133.48 1537.68
Speedup 1.0 1.94 3.77 7.38 14.08 25.56 43.25 58.68

Efficiency 1.00 0.97 0.94 0.92 0.88 0.80 0.68 0.46

Table 3
Strong scalability of PyFR on Alps for the Taylor–Green vortex test case using compressible Navier-Stokes solver on a mesh
with 12 × 1053 = 13, 891, 500 tetrahedral elements and seventh-order solution polynomials used to represent the solution
within each element. The speedup is relative to 16 GH200 GPUs. CUDA-Aware MPI was employed.

# Ranks 16 32 64 128 256 512 1024 2048
GDoF/s 96.07 199.60 404.73 806.95 1599.12 2861.56 4632.03 5753.96
Speedup 1.0 2.08 4.21 8.40 16.64 29.79 48.21 59.89

Efficiency 1.00 1.04 1.05 1.05 1.04 0.93 0.75 0.47

6. Conclusions
Since the initial release of PyFR v0.1.0 in 2013 [8], a range of new capabilities have been added to the framework,

with a view to enabling industrial adoption. In this work, we have provided details of these enhancements as released
in PyFR v2.0.3, including improvements to cross-platform performance (new backends, extensions of the DSL, new
matrix multiplication providers, improvements to the data layout, use of task graphs) and improvements to numerical
stability (modal filtering, anti-aliasing, artificial viscosity, entropy filtering), as well as the addition of prismatic,
tetrahedral and pyramid shaped elements, improved domain decomposition support for mixed element grids, improved
handling of curved element meshes, the addition of an adaptive time-stepping capability, the addition of incompressible
Euler and Navier-Stokes solvers, improvements to file formats and the development of a plugin architecture. We have
also explained efforts to grow an engaged developer and user community and provided a range of examples that
demonstrate how our user base is applying PyFR to solve a wide range of fundamental, applied and industrial flow
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problems. Finally, we have demonstrated the accuracy of PyFR v2.0.3 for a supersonic Taylor-Green vortex case, with
shocks and turbulence, and provided latest performance and scaling results on up to 1024 AMD Instinct MI250X
accelerators of Frontier at ORNL (each with two GCDs) and up to 2048 Nvidia GH200 GPUs of Alps at CSCS. We
note that absolute performance of PyFR accounting for the totality of both hardware and software improvements has,
conservatively, increased by almost 50× over the last decade.
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