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ABSTRACT

The influence and validity of wall boundary conditions for non-equilibrium fluid flows described by the Boltzmann equation remains an
open problem. The substantial computational cost of directly solving the Boltzmann equation has limited the extent of numerical validation
studies to simple, often two-dimensional, flow problems. Recent algorithmic advancements for the Boltzmann–Bhatnagar–Gross–Krook
equation introduced by the authors [Dzanic et al., J. Comput. Phys. 486, 112146 (2023)], consisting of a highly efficient high-order spatial dis-
cretization augmented with a discretely conservative velocity model, have made it feasible to accurately simulate unsteady three-dimensional
flow problems across both the rarefied and continuum regimes. This work presents a comprehensive evaluation and validation of wall bound-
ary conditions across a variety of flow regimes, primarily for the purpose of exploring their effects on momentum transfer in the low Mach
limit. Results are presented for a range of steady and unsteady wall-bounded flow problems across both the rarefied and continuum regimes,
from canonical two-dimensional laminar flows to unsteady three-dimensional transitional and turbulent flows, the latter of which are the first
instances of wall-bounded turbulent flows computed by directly solving the Boltzmann equation. We show that approximations of the molec-
ular gas dynamics equations can accurately predict both non-equilibrium phenomena and complex hydrodynamic flow instabilities and show
how spatial and velocity domain resolution affect the accuracy. The results indicate that an accurate approximation of particle transport (i.e.,
high spatial resolution) is significantly more important than particle collision (i.e., high velocity domain resolution) for predicting flow
instabilities and momentum transfer consistent with that predicted by the hydrodynamic equations and that these effects can be computed
accurately even with very few degrees of freedom in the velocity domain. These findings suggest that highly accurate spatial schemes (e.g.,
high-order schemes) are a promising approach for solving molecular gas dynamics for complex flows and that the direct solution of the
Boltzmann equation can be performed at a reasonable cost when compared to hydrodynamic simulations at the same level of resolution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0186037

I. INTRODUCTION

For the majority of application areas in computational fluid
dynamics (CFD), the assumption that the fluid can be treated as con-
tinuum is generally well-posed, and the fluid flow can be reliably
described solely via its macroscopic state. This assumption justifies the
choice of models based on the macroscopic conservation laws for
mass, momentum, and energy: the governing equations of continuum
fluid mechanics (e.g., Navier–Stokes equations) for which computa-
tional fluid dynamics methods have primarily focused on over the
years. However, in certain applications such as rarefied gas dynamics,
microflows, and hypersonic aeronautics, the flow can deviate signifi-
cantly from thermodynamic equilibrium, such that the approximation

of these flows using governing equations based on the continuum
assumption can give exceedingly erroneous predictions. For these non-
equilibrium flows, it is necessary to instead rely on methods derived
from the kinetic theory of gases such as the governing equations of
molecular gas dynamics, which underpin the macroscopic behavior of
the fluid.

One such kinetic approach can be given by approximating the
Boltzmann equation, which characterizes molecular gas dynamics
through particle transport and collision. In this approach, the underly-
ing flow physics are straightforwardly described via the evolution of a
scalar particle distribution function. From this description at the meso-
scale level, one can recover the evolution of the macroscopic flow state
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that is equally valid for rarefied and continuum flow regimes by simply
making use of the collision invariants of the governing equations.1 The
broad-range validity of this model makes the Boltzmann equation an
attractive approach for simulating complex multi-scale flows, particu-
larly ones that span multiple flow regimes. In fact, the Boltzmann
equation provides a single framework for simulating flows across a
variety of regimes, shown in Fig. 1, ranging from low-speed rarefied
flows to high-speed non-equilibrium flows. However, the direct simu-
lation of the Boltzmann equation has typically been focused strictly on
the low-Reynolds number rarefied regime, with applications ranging
from microflows (i.e., low-speed rarefied flows) to atmospheric reentry
(i.e., high-speed rarefied flows), as these are typically the most com-
mon conditions where continuum fluid mechanics descriptions break
down. Nevertheless, solutions of the Boltzmann equation in other flow
regimes may potentially offer new insights and provide more robust
and accurate numerical approaches for complex problems in fluid
dynamics.2 For example, the approximation of low-speed equilibrium
(i.e., continuum) flows via the Boltzmann equation would provide a
description of fluid flow through the evolution of a probability density
function, which encodes the dynamics of the flow in a radically differ-
ent manner than the macroscopic conservation laws. As such, analysis
of solutions to the Boltzmann equation may lead to enhancing our
fundamental understanding of flow phenomena such as transition to
turbulence since the complex or even chaotic flow behavior may actu-
ally stem from much simpler dynamics in higher-dimensional repre-
sentations such as the one provided by the Boltzmann equation.3

Furthermore, for high-speed non-equilibrium flows (e.g., hypersonic
aeronautics), the strong multi-scale nature of the flow poses a challenge
for current numerical approaches, which rely on the Navier–Stokes
equations,4 and the approximation of these flows through the molecular
gas dynamics perspective offered by the Boltzmann equation may pro-
vide a better framework for simulating the complex high-temperature

aerothermodynamic effects, which are encountered in these
applications.5,6

While these potential benefits certainly motivate the use of the
Boltzmann equation as a numerical approach for simulating complex
multi-scale flows, they come at the expense of a significantly larger
computational cost than the hydrodynamic equations. This cost stems
from two main sources: high dimensionality and modeling of the par-
ticle interactions. For the former, the distribution function, which rep-
resents a measure of the probability density of a particle existing at
some location with some velocity, is necessarily defined over a phase
space, which can be up to seven-dimensional. As such, the cost of
approximating this phase space grows extremely quickly with respect
to the resolution. For the latter, modeling particle collision can be an
extremely computationally intensive task, requiring integration over
even higher-dimensional spaces, such that the process can become the
majority of the computational effort of solving the governing equa-
tions. As a result, directly solving the Boltzmann equation has typically
been restricted to simpler applications (e.g., two-dimensional steady
flows), and its use for complex engineering flows has widely been con-
sidered intractable.

To broaden the applicability of the Boltzmann equation, more
efficient approaches must be used to mitigate the cost of directly com-
puting the collision term and the high dimensionality of the equations.
A common approach for the former is to approximate this process
with a suitable model, the most ubiquitous being the Bhatnagar–
Gross–Krook (BGK)7 model. This approach, which approximates col-
lisions as a relaxation process toward thermodynamic equilibrium, can
drastically reduce the cost of the modeling particle interactions while
still retaining many of the desirable properties of the full collision
integral, such as its entropy-satisfying properties embedded in
Boltzmann’s H-theorem and convergence to the continuum approxi-
mation in the asymptotic limit. For the latter, the curse of dimensional-
ity can be stymied by utilizing more efficient numerical methods,
which can offer equivalent accuracy with lower resolution, reducing
the number of degrees of freedom necessary to approximate the high-
dimensional phase space. These efficiency improvements can be real-
ized through the use of spatially high-order schemes,8,9 which offer
better spatial resolution at a lower computational cost, in conjunction
with discretely conservative velocity models,10,11 which can reduce the
unnecessary degrees of freedom in the velocity domain typically
needed to mitigate integration errors to ensure conservation. The com-
bination of these approaches for the Boltzmann–BGK equation was
introduced by the authors in Dzanic et al.,12 consisting of a positivity-
preserving high-order flux reconstruction scheme augmented with a
discretely conservative nodal velocity model efficiently implemented
on large-scale graphics processing unit (GPU) computing architec-
tures. These advancements have drastically expanded the complexity
of the flows that can be simulated by directly solving the Boltzmann
equation, allowing for its application to even three-dimensional turbu-
lent flows, which is, to the authors’ knowledge, the first instance of
such flows computed in this manner.

The purpose of this work is to verify and validate our approach to
molecular gas dynamics for complex wall-bounded fluid flows by
leveraging the ability to directly solve the Boltzmann–BGK partial dif-
ferential equation for problems that were previously intractable. As the
Boltzmann equation has not yet been applied to these more complex
flows (e.g., transitional and turbulent flows, unsteady non-equilibrium

FIG. 1. Diagram of the various flow regimes for which the Boltzmann equation is
valid across. Red line encloses the regimes the Boltzmann equation is typically
applied to. Blue line encloses the regimes, which are explored in this work.
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flows, etc.), it is not evident whether this approach can even predict
these fundamental flow phenomena and properties such as: (1) hydro-
dynamic instabilities leading to transition to turbulence; (2) momen-
tum transfer effects and wall shear stresses across the continuum and
rarefied regimes; (3) energy transfer effects and surface heat fluxes in
the high Mach regime; and (4) shock-driven flow instabilities and
interactions. Uncertainties in the ability of predicting these fundamen-
tal flow features are further compounded by the fact that the correct
choice and validity of wall boundary conditions for the Boltzmann
equation remain an open problem,13,14 particularly so for unsteady
flows and flows in the rarefied regime. Thus, an extensive validation of
the model is necessary prior to its application to complex engineering
problems (e.g., hypersonic transitional flows). This paper focuses on
the influence of wall boundary conditions on momentum transfer,
with the goal of presenting a comprehensive evaluation and validation
of approximations of the Boltzmann equation for wall-bounded flows
across a variety of operating conditions, including two- and three-
dimensional laminar and transitional/turbulent flows across the rare-
fied and continuum regimes. To isolate the effects of momentum
transfer from energy transfer, calculations are performed in the low
Mach limit, and particular attention is dedicated to observing the
effects of spatial and velocity domain resolution on predicting non-
equilibrium and unsteady flows.

The remainder of this manuscript is organized as follows. In
Sec. II, the governing equations and numerical approach are presented.
Implementation details are then shown in Sec. III, and the results of
numerical experiments are presented in Sec. IV. A discussion on the
results is then given in Sec. V, and conclusions are finally drawn in
Sec. VI.

II. METHODOLOGY

The Boltzmann equation can be given in terms of a linear conser-
vation law with a nonlinear source term as

@t f ðx; u; tÞ þ u � rf ¼ Cð f ; f 0Þ; (1)

where x 2 Xx is the physical space for some physical domain Xx

� Rd and spatial dimension d, u 2 Xu is the associated velocity space
for some velocity domain Xu 2 Rm and velocity dimension
m � d; f ðx; u; tÞ 2 R is a scalar particle distribution function, and
Cð f ; f 0Þ is the collision operator which models particle interactions.1

The distribution function, which represents a probability density of a
particle existing at some location x with some velocity u, can be related
to a unique macroscopic state of the system. By taking the moments of
the distribution function, the conserved flow variables Qðx; tÞ can be
recovered as

Qðx; tÞ ¼ q; qU; E½ �T ¼
ð
Rm

f ðx; u; tÞwðuÞ du; (2)

where q is the density, qU is the momentum vector, E is the total
energy, and wðuÞ :¼ ½1; u; ðu � uÞ=2�T is the vector of collision invari-
ants. Furthermore, it is sometimes convenient to represent the solution
in terms of the primitive variables q ¼ ½q;U; P�T , where U ¼ qU=q is
the macroscopic velocity and P ¼ ðc� 1Þ E � 1

2qU � U� �
is the pres-

sure. To differentiate between the microscopic and macroscopic veloci-
ties, we utilize the notation that the lowercase symbol u refers to the
microscopic velocity, whereas the uppercase symbol U refers to the
macroscopic velocity.

The primary characteristic quantity for the Boltzmann equation
is the Knudsen number, defined as

Kn ¼ k
L
; (3)

where k is the particle mean free path and L is some characteristic
length scale of the problem. The Knudsen number can be considered
as a measure of the non-equilibrium of the flow, with approximate
ranges in the Knudsen number corresponding to varying flow regimes
(e.g., continuum flow for Kn < 10�3, slip flow for 10�3 < Kn < 10�1,
transitional flow for 10�1 < Kn < 10, and free molecular flow for
Kn> 1015). This quantity can be related to the Mach number M and
the Reynolds number Re in the flow as

Kn ¼
ffiffiffiffiffi
cp
2

r
M
Re

; (4)

where c is the specific heat ratio.
Without a model for internal degrees of freedom for a molecule

(e.g., rotation, vibration), the Boltzmann equation as given by Eq. (1)
approximates a monatomic molecule for which only translational
degrees of freedom exist. Therefore, for an m-dimensional velocity
space, there are m degrees of freedom, such that the specific heat ratio
can be computed as c ¼ 1þ 2=m. In this work, we neglect internal
degrees of freedom and use a velocity domain of equal dimensionality
as the spatial domain (i.e., m¼ d), which fixes the specific heat ratio to
c¼ 2 and c ¼ 5=3 for two- and three-dimensional problems, respec-
tively. While proper representation of the specific heat ratio as well as
suitable modeling of internal degrees of freedom play an important
role for high-temperature flows,16 these effects are negligible at low
Mach numbers, which is the focus of this work.

A. Collision operator

To avoid the computational complexity of directly computing the
collision operator Cð f ; f 0Þ, the effect of particle interactions can be
approximated using a suitable collision model. In the BGK model,7

particle collision is approximated as a multi-dimensional relaxation
process of a gas tending toward thermodynamic equilibrium, given as

Cð f ; f 0Þ � gðx; u; tÞ � f ðx; u; tÞ
s

: (5)

Here, gðx; u; tÞ represents the distribution of a state in thermodynamic
equilibrium and s represents some collision timescale.

The distribution of equilibrium state stems closely from
Boltzmann’s H-theorem as it is the state that minimizes the entropy
HðzÞ, i.e.,

gðuÞ ¼ arg min
z

HðzÞ; HðzÞ ¼
ð
Rm

z log ðzÞ dz; (6)

subject to the compatibility conditionð
Rm

gðx; u; tÞwðuÞ du ¼
ð
Rm

f ðx; u; tÞwðuÞ du: (7)

This compatibility condition ensures that the macroscopic states of
gðx; u; tÞ and f ðx; u; tÞ are identical, such that the conservation of the
macroscopic variables is enforced. In the absence of internal degrees of
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freedom, the state that minimizes the entropy and (analytically) satis-
fies the compatibility condition is a Maxwellian distribution of the
form

gðx; u; tÞ ¼ qðx; tÞ
2phðx; tÞ½ �d=2

exp �ku� Uðx; tÞk22
2hðx; tÞ

" #
; (8)

where h ¼ P=q is a scaled temperature. We additionally use the nota-
tion gðQÞ to denote the Maxwellian distribution corresponding to the
macroscopic state variablesQ.

It can be shown1 that the collision time s is related to the dynamic
viscosity l of the flow as

l ¼ sP: (9)

By setting the collision time as a constant value, unphysical behavior of
the transport coefficient is recovered where the viscosity varies propor-
tionally with pressure. Instead, it is more appropriate to adapt the colli-
sion time to recover a more physically consistent temperature-viscosity
power law, i.e.,

l / hx; (10)

where x is the viscosity law exponent that depends on the gas being
simulated. This is achieved by setting the collision time as

s ¼ lref
Pref

h
href

� �x

; (11)

where the subscript ref denotes the reference quantities.
In its standard form, the BGK model assumes a single relaxation

time for both momentum transfer and heat transfer, such that it recov-
ers a unit Prandtl number. While relatively simple modifications can
be applied to the model to recover proper thermal behavior (e.g.,
Shakhov model17 and ellipsoidal BGK18), the application and valida-
tion of these heat transfer models are left as a topic of future research
as this work focuses on the low Mach regime where temperature varia-
tions due to fluid compressibility are minimal.

B. Spatial discretization

The phase space in the Boltzmann equation possesses a useful
property in that for a fixed location u0 in velocity space, the governing
equations reduce to an advection equation with a linear flux Fð f Þ and
nonlinear source term S, given as

@t f ðx; tÞ þ r � Fð f Þ ¼ S and Fð f Þ ¼ u0f : (12)

For each location in velocity space, the left-hand side of Eq. (12) is dis-
cretized using the flux reconstruction scheme of Huynh,19 a high-
order discontinuous spectral element method that can be considered
to be a generalization of the nodal discontinuous Galerkin method.20

A brief overview of this scheme as applied to the Boltzmann equation
is presented here, but a more detailed description can be found in
Dzanic et al.,12 Sec. 3.1.

In this approach, the spatial domain Xx is partitioned into Ne ele-
ments Xx

k such that Xx ¼ [Ne X
x
k and Xx

i \ Xx
j ¼ 1 for i 6¼ j. An

example of this tessellation is shown on the left-hand side of Fig. 2. For
each element Xx

k , a nodal interpolating polynomial approximation of
the solution is given in the form of

f ðxÞ ¼
XNs

i¼1

f ðxsiÞ/iðxÞ; (13)

where xsi 2 Xx
k 8 i 2 f1;…;Nsg is a set of Ns solution nodes and /iðxÞ

is a set of nodal basis functions with the property /iðxsjÞ ¼ dij. We uti-
lize the notation that Pp denotes the order of the approximation, taken
as the maximal order of f ðxÞ.

Per the flux reconstruction methodology, the flux is calculated
through a collocation projection onto the solution nodes augmented
with a correction term to allow for communication between elements

FðxÞ ¼ u0f ðxÞ þ
XNf

i¼1

FI
i � u0 � ni f ðxfi Þ

h i
giðxÞ: (14)

Here, xfi 2 @Xx
k 8 i 2 f1;…;Nf g is a set of Nf interface flux nodes and

ni is their associated outward-facing normal vector. Furthermore, FI
i is

a common interface flux, simply taken as the upwind-biased value at
the interfaces, i.e.,

FI
i ¼

unf �i ; if un > 0;

unf þi ; else;

(
(15)

where un ¼ u0 � ni and the superscripts � and þ denote the interior
value (from the element of interest) and the exterior value (from the
face-adjacent element) of the solution at the interface, respectively.
Finally, gi are the set of correction functions associated with the given
flux nodes xfi , which have the properties that

ni � gjðxfi Þ ¼ dij and
XNf

i¼1

giðxÞ 2 RTp; (16)

where RTp is the Raviart–Thomas space of order p. These correction
functions are typically chosen such as to recover the nodal discontinu-
ous Galerkin approach.19–21

Due to the use of high-order interpolating polynomials for the
distribution function, an initially strictly positive solution may not
remain strictly positive as these high-order schemes typically do not
preserve a maximum principle. Since the distribution function is a
probability measure, the presence of negative values would result in
unphysical predictions. Furthermore, this may also result in numerical

FIG. 2. Schematic of a two-dimensional phase space discretization using an
unstructured spatial domain Xx with P2 elements and a velocity domain Xu with
Nv ¼ 162. Circles denote the spatial solution nodes (red), interface flux nodes
(blue), and velocity space nodes (orange), respectively.
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instabilities as the equilibrium distribution function is only well-
defined for a strictly positive macroscopic density and temperature,
which is ensured if the distribution function is strictly positive. As
such, the spatial discretization is augmented with the high-order, posi-
tivity-preserving limiter of Zhang and Shu.22 For each spatial element
and each location in velocity space, a contraction to the element-wise
mean �f is performed if the distribution function attains a negative
value at any spatial node, i.e.,

f̂ ðxiÞ ¼ �f þ b f ðxiÞ � �f
� �

; (17)

where

b ¼ min

				 �f
�f � fmin

				; 1
" #

and fmin ¼ min f ðxiÞ 8 i 2 f1;…;Nsg:

(18)

This limiting approach retains the high-order accuracy of the underly-
ing discontinuous spectral element method while ensuring positivity of
the distribution function and the resulting macroscopic density and
temperature.

C. Velocity discretization

The velocity space is represented by truncating the infinite
domain onto a finite domain Xu � Rm and discretizing this space by
Nv nodal points, shown on the right-hand side of Fig. 2. A Cartesian
grid with a uniform distribution in velocity space was chosen—this dif-
fers from the original scheme presented in Dzanic et al.,12 which uti-
lizes a non-uniform polar/spherical velocity space distribution as it
was found to be less generalizable and robust than the uniform
Cartesian approach. The velocity space is uniquely defined by its extent
and its resolution. For the numerical experiments in this work, we
denote the number of nodal points in the velocity domain as Nv

and utilize a uniform resolution and extent for each velocity dimension
centered at the origin, characterized by some maximum velocity
umax, i.e.,

Xu ¼ �umax; umax½ �m: (19)

A standard approach for computing this velocity bound is to set it as
some factor of the maximum thermal and macroscopic velocities in
the domain,13 i.e.,

umax ¼ max
x

kUðxÞk2 þ k
ffiffiffiffiffiffiffiffiffi
hðxÞ

p
 �
; (20)

where k¼ 4 in this work which, for a Maxwellian distribution, results
in 99% of the distribution function being contained within Xu. This
value is computed from the initial conditions and set as constant
throughout the simulation as these bounds are not expected to vary
much for low Mach number flows.

With this formulation, the velocity space and the associated dis-
tribution function at a given spatial location are represented by discrete
vectors u and f, respectively, each with Nv entries. To compute the
moments of the distribution function, a discrete integration operator
M with strictly positive entries is introduced, such that

M � f �
ð
Rm

f ðuÞ du: (21)

Due to the use of a uniform Cartesian distribution in the velocity
domain, the integration operation is computed by the trapezoidal rule,
which offers spectral convergence for smooth, compactly supported,
periodic functions on uniform grids.23 However, as this integration
operator is not exact, the compatibility condition in Eq. (7), which
holds under exact integration, is not necessarily satisfied discretely, i.e.,

M � f 	 w½ � ¼ Q 6¼ M � gðQÞ 	 w½ �: (22)

As a consequence of this inexactness, a standard discrete nodal imple-
mentation of the BGK collision operator introduces conservation
errors on the macroscopic state proportional to the integration error.
While this error can be mitigated with increased velocity space resolu-
tion, it was shown in Dzanic et al.12 that the primary source of approx-
imation error in the scheme stemmed from the conservation error,
and if the scheme can be formulated such as to ensure discrete conser-
vation by satisfying the discrete compatibility condition, accurate
approximation of the collision operator could be performed with
much fewer degrees of freedom in the velocity domain.

This discrete compatibility condition is enforced using the dis-
crete velocity model (DVM) approach of Mieussens.10 It was shown
that there exists a unique strictly positive discrete distribution function,
which satisfies the discrete compatibility condition and minimizes the
discrete log-entropy. This equilibrium distribution function is a
Maxwellian, referred to as a modified Maxwellian, which is formed
around a slightly modified macroscopic stateQ0. The modified macro-
scopic state is sought to satisfy the discrete compatibility condition as

M � f 	 w½ � ¼ M � gðQ0Þ 	 w
� �

; (23)

and it can easily be shown that Q0 ! Q in the limit of infinite velocity
space resolution. There does not exist a closed-form expression for
computing Q0, and therefore, it must be computed numerically.
However, this nonlinear optimization process can be easily and effi-
ciently computed due to its low dimensionality (dþ 2) and the pres-
ence of a closed-form expression of the Jacobian. As such, discrete
conservation can be ensured to near machine-zero levels with as few as
two iterations of Newton’s method. For an in-depth overview of this
numerical approach, the reader is referred to Dzanic et al.,12 Sec. 3.4.

D. Boundary conditions

For the Boltzmann equation, enforcing boundary conditions can
be highly nontrivial, particularly so for more complex boundary effects
such as wall–fluid interactions. In this work, the boundary conditions
are enforced weakly via the standard approach in discontinuous spectral
element methods where an exterior boundary state is prescribed and the
interface flux is computed from the interior and exterior solution states.
Due to the upwinding nature of the interface flux computation, outgoing
particles are not affected by the boundary state. Similarly to Sec. II B, we
utilize the notation f þðuÞ to refer to the exterior (boundary) state and
f �ðuÞ to refer to the interior state from the boundary-adjacent element.

The most straightforward boundary condition to enforce via the
weak formulation is a Neumann (free) boundary condition, where the
exterior state is set to mimic the interior state as

f þðuÞ ¼ f �ðuÞ: (24)

For this boundary condition, the solution is effectively unaffected by
the boundary state. Similarly, one can impose a Dirichlet-type (fixed)
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boundary condition by prescribing an exterior state for the distribution
function. In most applications, this is typically taken to be a
Maxwellian distribution centered around a particular macroscopic
stateQ, i.e.,

f þðuÞ ¼ gðQ0Þ: (25)

Note that the modified Maxwellian is used for the boundary state as
this is critical to ensuring conservation. For a constant boundary state,
this modified Maxwellian can either be precomputed or computed on
the fly. We remark here that due to the natural enforcement of the
characteristic direction of information propagation at the boundary
interfaces as a result of the upwinding performed at the particle level,
the use of fixed boundary states for far field-type boundaries was found
to be much more robust and suitable than mixed states commonly
encountered in Navier–Stokes approximations (e.g., fixed density/
momentum and extrapolated pressure at inlets, fixed pressure and
extrapolated density/momentum at outlets).

The enforcement of wall boundary conditions for the Boltzmann
equation can be a highly nontrivial task, and in many applications, it is
an open problem as to how to suitably model particle–wall interac-
tions.14 Two models originally suggested by Maxwell24 assume that
molecules are either reflected directly back into the domain, referred to
as specular reflection, or absorbed by the wall and re-emitted back into
the domain in equilibrium with the wall, referred to as diffuse reflec-
tion.13 One may further consider a convex combination of these two
boundary conditions based on some absorption coefficient a 2 ½0; 1�,
sometimes referred to as Maxwellian reflection, although this formula-
tion is not considered in this work.13 In the continuum limit, the specu-
lar and diffuse wall boundary conditions mimic adiabatic slip-wall and
isothermal no slip-wall boundary conditions for the Navier–Stokes
equations, respectively.

Specular wall boundary conditions can simply be represented as a
distribution function with a reflection about the wall normal direction
n as

f þðuÞ ¼ f �ðu� 2u?Þ; where u? ¼ ðu � nÞn: (26)

For arbitrary normal vectors, this reflection operation may require an
interpolation in velocity space. However, if the normal direction aligns
with the Cartesian axes, which will be the case for the numerical
experiments to be presented, the boundary condition can be imple-
mented as a simple transformation of the velocity space. It can easily
be shown that this boundary condition preserves the macroscopic den-
sity, wall-tangential momentum, and total energy of the interior state.

Diffuse wall boundary conditions can be represented as a modi-
fied Maxwellian distribution, given as

f þðuÞ ¼ ggðQ0
wÞ; (27)

whereQw is the macroscopic state of the wall and g is a scaling param-
eter to be defined momentarily, which is used to enforce the no-
penetration condition. The macroscopic wall state corresponds to the
primitive state

qw ¼ q�;Uw; q
�hw½ �T ; (28)

where q� is the interior macroscopic density, Uw is wall velocity vec-
tor, and hw is the wall temperature. Since the interface flux is computed
using an upwind approach (i.e., outgoing particles cannot affect the

interior state), it is necessary to scale the wall distribution function to
ensure zero mass flux across the boundary. The scaling parameter is
computed as

g ¼

XNv

i¼1

Mih
�
i

XNv

i¼1

Mih
þ
; (29)

whereMi is the ith component of the discrete integration operator,

h�i ¼ f �i ; if ui � n > 0;
0; else

�
(30)

and

hþi ¼ 0; ifui � n > 0;
giðQ0

wÞ; else:

�
(31)

III. IMPLEMENTATION

The numerical scheme in this work was implemented in
PyFR,25 a massively parallel high-order flux reconstruction solver
that can be efficiently deployed on central processing unit (CPU)
and GPU computing architectures. Computation was performed on
parallel GPU computing architectures on up to 80 NVIDIA V100
GPUs. Closed solution node distribution was used, corresponding to
Gauss–Lobatto and a-optimized points20 for tensor-product and
simplex elements, respectively. An explicit, fourth-order, four-stage
Runge–Kutta scheme was used for temporal integration with a fixed
time step based on the minima of the collision time and a Courant
-Friedrichs -Lewy (CFL)-based time step bound with CFL ¼ 0:5 (see
Dzanic et al.,12 Sec. IV). As the explicit time step limits imposed by
highly resolved unsteady numerical simulations do not drastically
differ from the limits imposed by the stiffness of the source term in
the continuum limit, the use of an explicit time stepping scheme was
deemed preferable due to the significant advantages in computa-
tional efficiency for GPU computing architectures.

Initial conditions were set as the modified Maxwellian based on
the initial macroscopic state. Two iterations of the DVM were per-
formed for both the initial conditions and every subsequent evaluation
of the equilibrium distribution function as this was found to be suffi-
cient to ensure macroscopic conservation.12 Unless otherwise stated,
the viscosity law exponent was set to x ¼ 0:81. In certain numerical
experiments, comparisons were performed between the Boltzmann–
BGK approximation and a standard Navier–Stokes approximation.
For these comparisons, the Navier–Stokes results were computed via
the same codebase using identical values of the viscosity, specific heat
ratio, and Prandtl number and the corresponding wall boundary con-
ditions (e.g., no-slip isothermal wall boundary conditions for diffuse
wall boundary conditions). Furthermore, the inviscid interface fluxes
were computed using a Godunov-type exact Riemann solver26 and the
viscous interface fluxes were computed using the BR2 approach of
Bassi and Rebay.27 In many scenarios, the nonlinearity of the
Navier–Stokes equations caused numerical instabilities for underre-
solved flows. These instabilities were mitigated through anti-aliasing
via overintegration with a sufficiently strong quadrature rule.
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IV. RESULTS

The results of numerical experiments spanning a wide range of
parameters of interest, shown by the blue box in Fig. 1, are presented
in this section. First, numerical solutions obtained for flows in the rare-
fied regime, where the Boltzmann equation is more commonly
applied, are validated against established data in the literature. Novel
results for a three-dimensional rarefied flow are also presented to high-
light the capabilities of our model and to document a well-posed prob-
lem, which could be used as a validation test for future studies.
Afterward, numerical solutions for problems in the continuum regime
are presented together with an analysis of the results obtained with the
molecular gas dynamics model for wall-bounded transitional and tur-
bulent flows.

A. Couette flow

An initial validation of the numerical approach was performed
for planar Couette flow across a range of Knudsen numbers. For this
problem, the fluid rests between two walls moving tangentially relative
to each other, inducing fluid flow by imparting a wall shear stress. At
higher Knudsen numbers, strong non-equilibrium effects can result in
significant slip velocity at the wall, introducing complexity into the
flow and affecting the wall shear stress. The problem was defined on
the domain y 2 ½�H;H�, where H is the channel half-height. The top
and bottom walls, located at y ¼ 6H, were given a fixed velocity
6Uw, respectively, with a fixed wall temperature hw. Wall boundary
conditions were enforced as diffuse wall boundaries. The problem was
set up with a two-dimensional spatial domain (and corresponding
velocity domain) using a one element-wide mesh with periodicity
along the x direction, such that the problem was effectively one-
dimensional. The initial flow field was set as constant with zero veloc-
ity and unit density, and the pressure was set to yield a Mach number
of M¼ 0.2 based on the wall velocity. The wall temperature was set in
equilibrium with initial flow field. The Reynolds number and, by
extent, the Knudsen number, was then varied by modifying the

collision time. The problem was integrated to a steady state using a P3

approximation with Ne¼ 16 elements andNv ¼ 162 velocity nodes.
The resulting normalized velocity profiles at Knudsen numbers

of 0:2=
ffiffiffi
p

p
; 2=

ffiffiffi
p

p
, and 20=

ffiffiffi
p

p
are shown in Fig. 3(a) in comparison

with the linearized Boltzmann results of Sone et al.28 and information-
preserving direct simulation Monte Carlo (IP-DSMC) results of Fan
and Shen.29 Very good agreement was observed between the present
work and the reference results for all values of the Knudsen number.
Furthermore, the effect of the Knudsen number of the wall shear stress
was analyzed, where the shear stress was computed directly from the
distribution function as

sijðx; tÞ ¼
ð
Rm

uiujf ðx; u; tÞ du: (32)

The behavior of the wall shear stress, normalized by the free molecular
wall shear stress sFM ¼ qU2

w= M
ffiffiffi
p

p� �
, is shown for varying Knudsen

numbers in Fig. 3(b). It can be seen that the results show excellent
agreement with the reference data across the entire range of the
Knudsen number, from the slip flow regime to the free molecular
regime.

B. Rarefied flat plate

The extension to two-dimensional non-equilibrium flows was
performed through the simulation of a flat plate at zero incidence, a
fundamental flow problem in fluid dynamics. At low Reynolds num-
bers, the strong interaction between the boundary layer and the free-
stream result in non-negligible rarefaction in the flow, such that the
Navier–Stokes equations start to give erroneous results. The problem
consists of a flat plate of finite length L and zero thickness held station-
ary within a fixed freestream flow. For a validation against established
results such as the works of Sun and Boyd30 and Zhu et al.,31 we con-
sider the cases of a freestream Mach number ofM¼ 0.2 and Reynolds
numbers of 10 and 50, yielding flow conditions which sit within the
slip flow and continuum regimes, respectively.

FIG. 3. Normalized velocity profiles (left) and wall shear stress (right) for the Couette flow problem computed using a P3 approximation with Nv ¼ 162 at varying Knudsen
numbers.
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The domain was set identically to the work of Zhu et al.31 as
Xx ¼ ½�20:5L; 20:5L� 
 ½0; 20L�, with the plate defined over the
boundary�L=2 � x � L=2; y ¼ 0. Due to the symmetry of the prob-
lem at zero incidence, only a half-domain was considered, with sym-
metry boundary conditions (i.e., specular wall boundary conditions)
applied for the remaining portion of the x axis. Dirichlet boundary
conditions corresponding to the freestream flow conditions were
applied at the farfield boundaries, and a diffuse wall boundary condi-
tion was applied for the plate with the temperature set identical to the
freestream. The viscosity temperature exponent was set as x ¼ 0:77.

A quadrilateral mesh was generated with a streamwise and nor-
mal mesh spacing of Dx ¼ Dy ¼ L=32 at the wall. The mesh spacing
was proportionally increased away from the wall to yield 32 elements
in each direction, such that the final mesh consisted of Ne ¼ 96
 32
elements. A P3 approximation with Nv ¼ 162 velocity nodes was
used, resulting in a total of approximately 12.5 
 106 degrees of free-
dom. The solution was advanced to a steady state, and the resulting
wall skin friction coefficient as derived from Eq. (32) was computed.

The predicted skin friction coefficient for the cases of Re¼ 10
and Re¼ 50 is shown in Fig. 4 in comparison with the Navier–Stokes,
DSMC, and IP-DSMC results of Sun and Boyd30 and the unified gas
kinetic scheme (UGKS) results of Zhu et al.31 It can be seen that in the
continuum case of Re¼ 50, the varying approaches show similar pre-
dictions, generally within the statistical scatter of the DSMC results.
For the higher Knudsen number case at Re¼ 10, the effects of rarefac-
tion become more obvious as the present results show good agreement
with the varying kinetic approaches, which all notably differ from the
Navier–Stokes results. At the trailing edge where non-equilibrium
effects can be quite strong, the present results for both Reynolds num-
bers show less wall shear stress than the IP-DSMC and UGKS results
while showing better agreement with the DSMC results, and it is
expected that IP-DSMC approaches cannot capture all the necessary
physics in these strong non-equilibrium regions.30 These differences
highlight the potential benefits in accuracy obtained by directly solving
the Boltzmann equation. Furthermore, it was observed for the given
mesh, which contains high aspect ratio cells that can be problematic
for high-order discontinuous spectral element methods, the simulation
of the Boltzmann equation was stable and yielded consistent results,

whereas the simulation of the Navier–Stokes equations diverged at
approximation orders above P1 irrespective of time step and degree of
anti-aliasing. This suggests that the approximations of the Boltzmann
equation may be less prone to numerical stability issues than the
Navier–Stokes equations, likely due to the linear nature of the trans-
port term and the lack of second-order viscous terms.

C. Bent microchannel

For a more complex validation case with practical applications,
we consider the rarefied flow in a microchannel with bends, which has
been investigated in works such as that of Ho et al.,32 Agrawal et al.,33

Liu et al.,34 and Varade et al.35 In these microsystems, the interaction
of flow separation and reattachment around corners with rarefaction
effects such as wall slip presents challenging flow physics that are diffi-
cult to accurately predict. For this problem, we attempt to replicate the
numerical experiments of Ho et al.32 in which the flow through a dou-
bly bent channel is simulated for flow conditions in the slip flow
regime. The geometry consists of a rectangular channel of width h and
centerline length 5h feeding from an inlet reservoir to an outlet reser-
voir, shown in Fig. 5. The reservoir dimensions are taken as L¼ 10
andW¼ 4.

The flow was driven by a pressure gradient across the inlet and
outlet reservoirs, represented by a pressure ratio b. At the inlet, fixed
pressure Pi and temperature h0 were imposed, with the corresponding
outlet pressure and temperature set as Po ¼ bPi and h0, respectively.
For consistency with the work of Ho et al.,32 the pressure ratio was set
as b ¼ 0:5. At the walls, diffuse wall boundary conditions were used
with the wall temperature set as hw ¼ h0. For the given setup, the
Mach and Reynolds numbers were computed with respect to the bulk
velocity and inlet density. Three operating flow conditions from Ho
et al.32 were considered: (1) Kn � 0:01, with Re¼ 40.65 and
M¼ 0.251; (2) Kn � 0:02, with Re¼ 17.80 and M¼ 0.22; and (3)
Kn � 0:05, with Re¼ 4.72 and M¼ 0.146. We remark here that since
the specific heat ratio used in Ho et al.32 (c ¼ 5=3) differs from the
present work (c¼ 2), we attempt to replicate the flow Mach and
Reynolds numbers and let the Knudsen number vary slightly, less than
10%. As such, minor differences in the predicted flow fields are to be
expected.

The problem was solved using a P3 approximation with
Nv ¼ 322 on an unstructured quadrilateral mesh with an approximate
edge length of h=40 within the channel, shown in Fig. 5. The mesh
consisted of Ne ¼ 6510 elements, yielding a total of 106.7 million
degrees of freedom. The flow was advanced to a steady state, after
which the flow along the top and bottom channel walls was analyzed.
The profiles of the wall slip velocity and pressure, normalized by the
most probable molecular speed um ¼ ffiffiffiffiffiffiffi

2h0
p

and inlet pressure, respec-
tively, are shown in Fig. 6 for the case of Kn � 0:01. Very good agree-
ment could be observed between the present work and the results of
Ho et al.,32 with nearly identical predictions of the wall slip velocity
along both the upper and lower walls throughout the channel, even
around the convex and concave corners. Some differences could be
seen in the wall slip on the lower wall near the channel exit, but these
differences were quite minor. Additionally, very similar profiles in the
wall pressure distributions were observed, with the peaks around the
convex corners well-predicted.

A further comparison was performed against the results of Ho
et al.32 through the visualization of the resulting flow fields.

FIG. 4. Skin friction coefficient for the rarefied flat plate problem at varying
Reynolds numbers computed using a P3 approximation with Nv ¼ 162 in compari-
son to the Navier–Stokes, DSMC, and IP-DSMC results of Sun and Boyd30 and
UGKS results of Zhu et al.31
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The contours of pressure overlaid with velocity streamlines are shown
in Fig. 7 for the three operating conditions. Excellent agreement
between the predicted pressure and velocity fields was observed across
the range of Knudsen numbers, with nearly identical pressure con-
tours between the present work and reference results. Furthermore,
the velocity streamlines show that the complex flow behavior in the
slip flow regime is well-predicted, both in terms of the separation
bubbles at the convex and concave corners at lower Knudsen
number to their subsequent reattachment with increasing Knudsen
number.

To observe the effects of velocity space resolution on the accuracy
of the method for predicting flows in the rarefied regime, a qualitative

convergence study was performed for the three operating conditions.
The numerical experiments were repeated using identical problem set-
ups with three levels of velocity space resolution, a coarse space with
Nv ¼ 82, a medium space with Nv ¼ 162, and a fine space with
Nv ¼ 322, the latter of which was the resolution level used for the pre-
vious numerical experiments. The contours of pressure overlaid with
velocity streamlines computed with the varying velocity space resolu-
tion levels at Kn � 0:01, 0.02, and 0.05 are shown in Figs. 8–10,
respectively. It can be seen that when decreasing the velocity space res-
olution from Nv ¼ 322 to Nv ¼ 162, the results were indistinguishable
regardless of the Knudsen number. Furthermore, when the velocity
space resolution was further decreased to Nv ¼ 82, the results

FIG. 5. Schematic of the bent microchannel geometry (left) and simulation mesh (right). Reservoirs not drawn to scale. Wall boundaries represented by solid lines, inlet/outlet
boundaries represented by dotted lines. Top and bottom walls represented by red and blue lines, respectively.

FIG. 6. Profiles of normalized wall slip velocity (left) and normalized pressure (right) along the upper and lower channel walls for the bent microchannel problem at Kn � 0:01
(Re¼ 40.65, M¼ 0.251) computed using a P3 approximation with Nv ¼ 322 in comparison with the results of Ho et al.32
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remained effectively identical, with only very minor differences in the
velocity streamlines at lower Knudsen numbers that may even be
attributed to sensitivity in the post-processing method. These observa-
tions indicate very promising results in that flows with strong

non-equilibrium effects, at least in the low Mach regime, may be
well-resolved with as few as eight velocity nodes per dimension, a level
of resolution, which makes the direct simulation of higher-
dimensional problems via the Boltzmann equation completely feasible.

FIG. 7. Contours of normalized pressure overlaid with velocity streamlines for the bent microchannel problem at Kn � 0:01 (left), Kn � 0:02 (middle), and Kn � 0:05 (right)
computed using a P3 approximation with Nv ¼ 322 in comparison with the results of Ho et al.32

FIG. 8. Comparison of contours of normalized pressure overlaid with velocity streamlines for the bent microchannel problem at Kn � 0:01 computed using a P3 approximation
with varying velocity space resolution.
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However, it must be noted that this is only achievable given a discretely
conservative velocity model such as the one used in the present work
as it was shown in Dzanic et al.12 that the conservation errors stem-
ming from underresolved velocity spaces are significantly detrimental
to the accuracy and stability of the numerical approach.

D. Rarefied three-dimensional T-junction

To highlight the ability of the numerical approach in simulating
three-dimensional problems and to present novel results for three-
dimensional non-equilibrium flows, the simulation of a rarefied three-
dimensional T-junction was performed via the Boltzmann–BGK
approach. The flow within a three-dimensional T-junction can contain
complex flow physics that are not present in its two-dimensional coun-
terpart, and the T-shape geometry is frequently encountered in both
microfluidic and standard hydraulic devices as a method for mixing
fluids.36,37 We consider a similar case to that of the bent microchannel,
with a square channel fed from an inlet reservoir to an outlet reservoir.
A cross section of the geometry on the plane z¼ 0 is shown in Fig. 11.

Along the z direction, the channel extent was set as ½�h=2; h=2�, while
the reservoir extent was set as ½�h=2� L; h=2þ L� with L ¼ 3h.

The reservoir and wall boundary conditions were set identically to
the bent microchannel case with flow conditions corresponding to a
Mach number of M¼ 0.1 and a Reynolds number of Re¼ 10, yielding
a Knudsen number of Kn � 0:016, which places the flow well within
the slip regime. The problem was solved using aP3 approximation on a
structured hexahedral mesh with an approximate edge length of h=10
within the channel, yielding approximately Ne ¼ 3:5
 104 elements.
Per the observations in the velocity space convergence study for the
bent microchannel case, a velocity space resolution of Nv ¼ 83 was
deemed sufficient for the numerical experiment. The resulting total
number of degrees of freedom for the numerical experiment was
approximately 1.1 billion. The computational cost of the simulation per
characteristic time tc ¼ Ub=h was approximately 8.5 GPU hours for the
Boltzmann–BGK approach and 2.7 GPU hours for the Navier–Stokes
approach, with the relatively small increase in computational cost pri-
marily a result of the larger maximum admissible time step of the
Boltzmann–BGK approach for low Reynolds number flows.

FIG. 9. Comparison of contours of normalized pressure overlaid with velocity streamlines for the bent microchannel problem at Kn � 0:02 computed using a P3 approximation
with varying velocity space resolution.

FIG. 10. Comparison of contours of normalized pressure overlaid with velocity streamlines for the bent microchannel problem at Kn � 0:05 computed using a P3 approxima-
tion with varying velocity space resolution.
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The contours of velocity magnitude, normalized by the bulk
velocity Ub and overlaid with velocity streamlines, are shown on
the cross section z¼ 0 in Fig. 12 as computed by both the
Boltzmann–BGK equation and the Navier–Stokes equations on the
same mesh. It can be seen that in this flow regime, where slip velocity
becomes non-negligible, the overarching flow structure between the
two approaches was similar but noticeable differences could be
observed. The Boltzmann–BGK prediction showed a lower maximum
velocity along the centerline, which can be attributed to the slip veloc-
ity at the wall. As a result, the velocity flow field appeared more dif-
fused with the Boltzmann–BGK approach than the Navier–Stokes
approach. These observations were consistent with the velocity magni-
tude contours on cross sections at various x locations, shown in Figs.
13 and 14 for the Navier–Stokes and Boltzmann–BGK approach,
respectively. The differences in the maximum centerline velocity were
most pronounced aft of the channel corner (x=h > 0:5). A more
detailed comparison of the velocity profiles can be seen in Fig. 15,

shown in terms of the normalized velocity on the cross section z¼ 0.
The slip velocity at the wall is evident in the Boltzmann–BGK results,
which results in the lower centerline velocity in comparison with the
Navier–Stokes results. Overall, a difference of approximately 7% in the
maximum velocity was observed between the two approaches.

To observe the non-equilibrium effects of the flow in the near-
wall region, the wall slip velocity and shear stress were analyzed for the
bottom and top walls along the horizontal section of the channel,
shown in Figs. 16 and 17, respectively, for the cross section z¼ 0.
Along the bottom wall, the wall slip velocity was well-pronounced in
the Boltzmann–BGK results, showing slip on the order of 10% of the
bulk velocity, which could not be predicted via the standard
Navier–Stokes approximation. This resulted in a noticeable decrease in
the wall shear stress, where the profiles were qualitatively similar but
the Navier–Stokes results showed up to a 20% overprediction in the
stress compared to the Boltzmann–BGK results. The differences
between the two approaches were even more pronounced along the

FIG. 11. Schematic of the rarefied three-dimensional T-junction domain on the cross section z¼ 0. Wall boundaries represented by solid lines and inlet/outlet boundaries repre-
sented by dotted lines.

FIG. 12. Contours of normalized velocity magnitude overlaid with velocity streamlines for the rarefied three-dimensional T-junction problem on the cross section z¼ 0 computed
using a P3 approximation and Nv ¼ 83 with the Navier–Stokes equations (left) and the Boltzmann–BGK equation (right).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 017109 (2024); doi: 10.1063/5.0186037 36, 017109-12

Published under an exclusive license by AIP Publishing

 13 January 2024 18:41:17

pubs.aip.org/aip/phf


top wall due to the geometric singularity at the convex corner. Similar
levels of slip velocity and wall shear stress were predicted by the
Boltzmann–BGK approach along the top wall as with the bottom wall,
which were not accurately captured via the standard Navier–Stokes
approach. Furthermore, due to the singularity at the convex corner,
the Navier–Stokes results showed numerical instabilities in the corner
region, with highly oscillatory wall shear stress profiles and non-zero
wall velocity, the latter of which is possible due to weakly enforced
boundary conditions. In comparison, the Boltzmann–BGK predictions
did not show any indication of numerical instabilities, resulting in
well-behaved wall slip and shear stress profiles even in the corner
region. These results highlight the differences between the prediction
of rarefied gas dynamics obtained via the standard Navier–Stokes
equations and the Boltzmann–BGK equation as well as showcase the
ability of the numerical approach in simulating three-dimensional rar-
efied flows.

E. Laminar boundary layer

With the previous numerical experiments showing a validation of
the numerical approach for flows in the rarefied regime where molecu-
lar gas dynamics methods are commonly used, the remaining numeri-
cal experiments will focus on more complex flows in the continuum
regime for which the Boltzmann equation has not yet been validated
for. As an initial validation for continuum flows, we consider the
canonical case of a laminar boundary layer for which there exists an
approximate analytic solution. To yield flow conditions well into the
continuum regime, the Mach number was set as M¼ 0.2 and the
Reynolds number was set as Re ¼ 104 based on the boundary layer
reference length L.

The domain was set as Xx ¼ ½�2L; L� 
 ½0; 2L�. Due to the sym-
metry of the problem, only the half-domain (y> 0) was solved. Along
the bottom of the domain (y¼ 0), specular wall boundary conditions
were used for x< 0, while diffuse wall boundary conditions were used

FIG. 14. Contours of normalized velocity magnitude for the rarefied three-dimensional T-junction problem on cross sections at varying x locations computed using a P3 approx-
imation and Nv ¼ 83 with the Boltzmann–BGK equation. Legend identical to Fig. 12.

FIG. 15. Velocity profiles for the rarefied three-dimensional T-junction problem on the cross section z¼ 0 at varying x locations computed using a P3 approximation and Nv ¼ 83

with the Navier–Stokes equations (black, dashed) and the Boltzmann–BGK equation (red, solid). Profiles are shifted þ0, þ 2, þ 4, þ 6 along the abscissa, respectively.

FIG. 13. Contours of normalized velocity magnitude for the rarefied three-dimensional T-junction problem on cross sections at varying x locations computed using a P3 approx-
imation with the Navier–Stokes equations. Legend identical to Fig. 12.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 017109 (2024); doi: 10.1063/5.0186037 36, 017109-13

Published under an exclusive license by AIP Publishing

 13 January 2024 18:41:17

pubs.aip.org/aip/phf


for x � 0, such that the origin of the boundary layer coincided with
the origin of the domain. For the remaining boundaries, Dirichlet
boundary conditions corresponding to the freestream flow were
used. The problem was solved using a P3 approximation with
Nv ¼ 162. A quadrilateral mesh with Ne ¼ 64
 32 elements was
generated, with the boundary layer region resolved by 32 elements in
the streamwise direction. At the origin, the mesh spacing was set as
Dx ¼ L=200 and Dy ¼ L=500, with uniform progression toward the
outer boundaries.

The flow was advanced to a steady state after which the flow at
varying streamwise locations in the boundary layer was analyzed, repre-
sented through the local Reynolds number Rex. The normalized stream-
wise and normal velocities as computed by the Boltzmann–BGK

approach are shown in Fig. 18 in comparison with the Navier–Stokes
approach on the same mesh. These profiles are shown with respect to
the self-similar Blasius boundary layer solution, given in terms of the
self-similarity variable

g ¼ y

ffiffiffiffiffiffiffi
U1
�x

r
;

where � ¼ l=q is the kinematic viscosity. It can be seen that the
streamwise velocity profiles were predicted with very good agreement
with the Blasius prediction at all streamwise locations, and the
Navier–Stokes and Boltzmann–BGK results were virtually indistin-
guishable. Furthermore, similar behavior was observed for the normal

FIG. 16. Profiles of normalized wall slip velocity (left) and normalized wall shear stress (right) along the bottom wall (y ¼ �h=2; z ¼ 0) for the rarefied three-dimensional T-
junction problem computed using a P3 approximation and Nv ¼ 83 with the Navier–Stokes equations (black, dashed) and the Boltzmann–BGK equation (red, solid).

FIG. 17. Profiles of normalized wall slip velocity (left) and normalized wall shear stress (right) along the upper wall (y ¼ h=2; z ¼ 0) for the rarefied three-dimensional
T-junction problem computed using a P3 approximation and Nv ¼ 83 with the Navier–Stokes equations (black, dashed) and the Boltzmann–BGK equation (red, solid).
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velocity profiles, which are typically much more difficult to accurately
resolve.

To explore the effects of the velocity space resolution on the abil-
ity of the Boltzmann–BGK approach in predicting momentum trans-
fer effects in the continuum regime, a qualitative convergence study
was performed for the laminar boundary layer. Three levels of resolu-
tion were chosen, corresponding to Nv ¼ 82, 122, and 162 velocity
nodes, the latter of which was the level of resolution used for the previ-
ous numerical experiment. A comparison of the normal velocity pro-
files at these velocity space resolution levels is shown in Fig. 19. It can
be seen that the profiles were essentially identical down to as few as
eight velocity nodes per dimension, which is consistent with the obser-
vations of the velocity space convergence study performed for the bent
microchannel. Furthermore, a comparison of the streamwise distribu-
tion of the wall shear stress was performed, shown in Fig. 20. As
expected from the results of the normal velocity profiles, the predicted
wall shear stress profiles showed excellent agreement with the Blasius
prediction across all levels of velocity space resolution. These results

indicate that, like in the rarefied flow case, accurate prediction of
momentum transfer effects for flows in the continuum regime may be
achieved with as few as eight velocity nodes per dimension, which
opens up the possibility of simulating complex continuum flows via
the Boltzmann–BGK at a reasonable computational cost.

F. Transitional Taylor–Couette flow

With the validation of the Boltzmann–BGK approach for basic
wall-bounded continuum flows, the approach was then extended to
wall-bounded transitional flows with three-dimensional hydrodynamic
instabilities. The flow between concentric rotating cylinders, or
Taylor–Couette flow,38 presents an ideal test case due to its simple
numerical setup yet complex flow physics, ranging from steady lami-
nar flow to fully developed turbulent flow. In particular, the numerical
setup of Wang and Jourdan,39 consisting of a perturbed laminar solu-
tion which transitions to turbulence, was chosen as it was proposed as
a benchmark for unsteady scale-resolving simulations of wall-bounded

FIG. 18. Normalized streamwise (left) and vertical (right) velocity profiles for the laminar boundary layer problem at varying streamwise locations computed with the
Navier–Stokes equations (black markers) and the Boltzmann–BGK equation (red markers) using a P3 approximation with Nv ¼ 162. Results shown in comparison with the
Blasius prediction.

FIG. 19. Comparison of normalized vertical velocity profiles for the laminar boundary layer problem at varying streamwise locations computed using the Boltzmann–BGK
approach and a P3 approximation with varying velocity space resolution.
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transitional and turbulent flows. Furthermore, this case has the added
benefit of presenting a proper validation of shear-induced transition to
turbulence on curved walls.

The problem was solved on an annular domain r 2 ½1; 2�;
h 2 ½0; 2pÞ; z 2 ½0; 2p�, with the inner cylinder wall rotating at a fixed
angular velocity Uh ¼ 1 and the outer cylinder wall fixed. Along the z
direction, periodic boundary conditions were enforced, whereas for the
inner and outer cylinder walls, diffuse wall boundary conditions were
used. Per Wang and Jourdan,39 the Reynolds number, based on the
annulus width d¼ 1, was set as Re¼ 4000 as these conditions yield
rich flow physics with an initially laminar solution transitioning to
fully developed turbulent flow. The Mach number was set as 0.3.

The initial conditions were set based on a perturbation of the
steady incompressible laminar solution to the Taylor–Couette flow. In
terms of the cylindrical coordinate system, these flow conditions are
given as

q ¼ q; (33a)

ur ¼ ur þ u0r ; (33b)

uh ¼ uh þ u0h; (33c)

uz ¼ uz ; (33d)

P ¼ P þ P0; (33e)

where the superscript � denotes the laminar solution and �0 denotes
the perturbation. The laminar solution can be given as

q ¼ 1; (34a)

ur ¼ 0; (34b)

uh ¼ Ar þ B
r
; (34c)

uz ¼ 0; (34d)

P ¼ q
1
2
A2r2 þ 2AB log ðrÞ � 1

2
B2

r2

 �
þ C; (34e)

where A ¼ �1=3 and B¼ 4/3 for the given geometry. The integration
constant C can be calculated by setting the reference pressure
P0 ¼ 1=ðcM2Þ at the inner wall, i.e.,

C ¼ � 1
2
q A2 � B2ð Þ þ P0: (35)

The boundary conditions at the wall (i.e., the velocity and temperature)
are taken from the laminar solution. To drive the initially laminar flow
to transition, a perturbation is superimposed upon the laminar solu-
tion profile. From Wang and Jourdan,39 the perturbation takes on the
form

u0r ¼ � sin ðhÞ sin pðr � 1Þð Þsin ðzÞ; (36a)

u0h ¼ � cos ðhÞ sin pðr � 1Þð Þsin ðzÞ; (36b)

P0 ¼ 1
2
�2 cos ð2hÞ sin 2pðr � 1Þð Þsin ð2zÞ; (36c)

where � ¼ 0:1.
A baseline hexahedral mesh was generated using Ne ¼ 10
 40


 32 elements along the radial, polar, and longitudinal directions,
respectively, shown in Fig. 21. The wall normal spacing at the inner
and outer walls was set as Dr ¼ 0:007, and the curvature of the wall
surfaces was approximated by cubic polynomials. A reference mesh
was generated by uniformly subdividing the baseline mesh along
each direction, resulting in Ne ¼ 20
 80
 64 elements, also
shown in Fig. 21. The problem was solved using a P5 approxima-
tion on the baseline mesh with Nv ¼ 163 using both the
Boltzmann–BGK approach and a standard Navier–Stokes
approach, yielding approximately 11.3 
 109 degrees of freedom
for the former. This level of spatial resolution was deemed by
Wang and Jourdan39 to be sufficient to adequately resolve the
transition mechanisms in the flow. Furthermore, a reference solu-
tion was computed on the reference mesh using the Navier–Stokes
equations with a P5 approximation. We remark here that for the
baseline mesh, the Navier–Stokes approach diverged without anti-
aliasing. The approximate computational cost per characteristic
time was 560 GPU hours for the Boltzmann–BGK approach and
1.2 GPU hours for the Navier–Stokes approach, although the com-
putational cost of the former was reduced to 44 GPU hours when
the velocity space resolution was decreased to Nv ¼ 83.

The quantities of interest in the flow were the volume-averaged
enstrophy and kinetic energy, computed as

FIG. 20. Comparison of wall shear stress profiles for the laminar boundary layer problem computed using the Boltzmann–BGK approach and a P3 approximation with varying
velocity space resolution.
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e ¼ 1
jXxj

ð
Xx
qx � x dV (37)

and

k ¼ 1
jXxj

ð
Xx

1
2
qU � U dV; (38)

respectively, where x ¼ r
 U is the vorticity and jXxj ¼ 6p2 is the
domain volume. The enstrophy and kinetic energy over time as com-
puted by the Boltzmann–BGK approach and Navier–Stokes approach
on the baseline mesh are shown in Fig. 22 in comparison with the ref-
erence results. For the given resolution, the Boltzmann–BGK approach
showed excellent agreement with the Navier–Stokes approach, with
both the rapid rise in enstrophy and associated decay in kinetic energy
dissipation rate well-predicted up to and around the enstrophy peak at
t¼ 22. Near the peak, the Boltzmann–BGK approach showed

marginally higher enstrophy than the Navier–Stokes approach and ref-
erence results. After the peak, both methods showed marginally less
enstrophy than the reference results, which can most likely be attrib-
uted to the underresolution of the now turbulent flow.

To better analyze the ability of the Boltzmann–BGK approach in
predicting the dominant structures in the flow, the velocity and vortic-
ity profiles were extracted at various angularly equispaced cross sec-
tions. The contours of velocity magnitude and vorticity (aligned with
the cross section normal direction) computed by the Boltzmann–BGK
and Navier–Stokes approaches on the baseline mesh are shown in
Figs. 23 and 24, respectively, in comparison with the reference results.
It can be seen that the dominant flow structures are well-predicted by
the Boltzmann–BGK approach, with the rollup of the vortices in the
flow showing good agreement with the Navier–Stokes results on
the same mesh and the reference results. However, whereas the
Navier–Stokes results were visually very similar to the reference results

FIG. 21. Baseline (left) and reference
(right) mesh for the Taylor–Couette flow
case.

FIG. 22. Profiles of volume-averaged enstrophy (left) and kinetic energy (right) over time for the three-dimensional transitional Taylor–Couette flow problem computed with the
Navier–Stokes equations (black, dashed) and the Boltzmann–BGK equation (red, solid) on the baseline mesh using a P5 approximation with Nv ¼ 163. Reference solution
shown with black markers.
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for the given resolution, the Boltzmann–BGK results showed some
notable differences. Particularly, the rollup of the shear layer showed
signs of instabilities that were not present in the Navier–Stokes results
or the reference results. If these results were shown to be converged
with respect to both the spatial and velocity domains, this would indi-
cate that the Boltzmann–BGK approach does not accurately predict
hydrodynamic instabilities, which could be attributed to the exponen-
tial nature of the BGK approximation in comparison with the qua-
dratic nature of the true collision operator. We therefore attempt to
deduce the underlying numerical mechanisms behind these
discrepancies.

The most intuitive explanation for why the Boltzmann–BGK
approach does not predict the flow physics in a consistent manner

with the Navier–Stokes approach on the same spatial mesh would be
that the velocity space is not sufficiently resolved. Given the velocity
space resolution of the numerical experiments, Nv ¼ 163, this would
be in sharp contrast to the observations for the required level of resolu-
tion for steady rarefied and continuum flows, indicating that much
higher resolution is required to simulate the more complex unsteady
flow physics. To assess this claim, the numerical experiment was
repeated using a different level of velocity space resolution, Nv ¼ 83,
which corresponds to the level of resolution deemed to be sufficient
for the previously simulated steady flows. A comparison of the pre-
dicted velocity magnitude contours and vorticity contours between the
two levels of velocity space resolution is shown in Figs. 25 and 26,
respectively. It can be seen that the two results were visually

FIG. 23. Contours of velocity magnitude for the three-dimensional transitional Taylor–Couette flow problem at t¼ 22 on angularly equispaced cross sections from h¼ 0 (top) to
h ¼ p (bottom). Results computed with the Navier–Stokes equations (middle) and the Boltzmann–BGK equation (right) on the baseline mesh using a P5 approximation with
Nv ¼ 163. Reference solution shown on left.

FIG. 24. Contours of vorticity along the cross section normal direction for the three-dimensional transitional Taylor–Couette flow problem at t¼ 22 on angularly equispaced
cross sections from h¼ 0 (top) to h ¼ p (bottom). Results computed with the Navier–Stokes equations (middle) and the Boltzmann–BGK equation (right) on the baseline
mesh using a P5 approximation with Nv ¼ 163. Reference solution shown on left.
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indistinguishable, both showing the same exact instabilities across the
shear layer that are not present in the reference results. Therefore, it is
sufficient to say that the presented results are converged in velocity
space and that the discrepancies between the Navier–Stokes approxi-
mation and the Boltzmann–BGK approximation are not as a result of
a lack of resolution in the velocity domain. Furthermore, these results
also indicate that the level of velocity space resolution needed to be
converged in velocity space does not differ much between steady rare-
fied/continuum flows and unsteady transitional/turbulent flows.

Another possible explanation for the discrepancies could be
attributed to underresolution in the spatial domain. We remark again
that the Navier–Stokes simulations on the baseline mesh were unstable
without anti-aliasing, diverging shortly after the enstrophy peak at

t¼ 22, indicating that the flow is necessarily underresolved on the
baseline mesh. It was observed by the authors that when anti-aliasing
was disabled for the Navier–Stokes approach on the baseline mesh, the
results also showed instabilities in the flow prior to the simulation
diverging. To verify whether the discrepancies between the
Boltzmann–BGK approach and the Navier–Stokes approach could be
attributed to inadequate modeling of the transport term in the
Boltzmann equation (i.e., underresolved spatial domain), a refined
mesh was generated with Ne ¼ 15
 60
 48 elements. A comparison
of the predicted velocity magnitude contours and vorticity contours
between the baseline mesh and refined mesh is shown in Figs. 27 and
28, respectively. It can be seen that the increased spatial resolution sig-
nificantly reduces the discrepancies between the Boltzmann–BGK

FIG. 25. Contours of velocity magnitude for the three-dimensional transitional Taylor–Couette flow problem at t¼ 22 on angularly equispaced cross sections from h¼ 0 (top) to
h ¼ p (bottom). Results computed with Boltzmann–BGK equation on the baseline mesh using a P5 approximation with Nv ¼ 83 (middle) and Nv ¼ 163 (right). Reference
solution shown on left.

FIG. 26. Contours of vorticity along the cross section normal direction for the three-dimensional transitional Taylor–Couette flow problem at t¼ 22 on angularly equispaced
cross sections from h¼ 0 (top) to h ¼ p (bottom). Results computed with the Boltzmann–BGK equation on the baseline mesh using a P5 approximation with Nv ¼ 83 (middle)
and Nv ¼ 163 (right). Reference solution shown on left.
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results and the reference results, with very good agreement in the pre-
diction of the structures including the shear layers. These observations
indicate a very interesting characteristic of numerical approximations
of the Boltzmann–BGK equation: to accurately predict hydrodynamic
instabilities consistently with the Navier–Stokes equations, it is much
more important to accurately resolve particle transport than particle col-
lision, i.e., it is more important to have a highly resolved spatial domain
than a highly resolved velocity domain. These findings suggest that
highly accurate spatial schemes such as high-order methods could be
very beneficial for performing scale-resolving simulations via the
Boltzmann–BGK approach.

G. SD7003 at Re560000

As a final test case for the Boltzmann–BGK approach for com-
plex fluid flows, the flow around an SD7003 airfoil at a Reynolds num-
ber of Re¼ 60 000 and angle of attack of a ¼ 8� was simulated. At
these conditions, a variety of complex flow phenomena can be
observed, including the laminar separation of the flow around the
curved leading edge, the subsequent transition of the laminar shear
layer to turbulence, and the reattachment of the turbulent shear layer,
which develops into a turbulent boundary layer and wake.40 It can be
notably difficult to accurately predict these flow features as they can be
highly sensitive to the flow conditions and numerical resolution, and

FIG. 27. Contours of velocity magnitude for the three-dimensional transitional Taylor–Couette flow problem at t¼ 22 on angularly equispaced cross sections from h¼ 0 (top) to
h ¼ p (bottom). Results computed with the Boltzmann–BGK equation on the baseline mesh (middle) and refined mesh (right) using a P5 approximation with Nv ¼ 83.
Reference solution shown on left.

FIG. 28. Contours of vorticity along the cross section normal direction for the three-dimensional transitional Taylor–Couette flow problem at t¼ 22 on angularly equispaced
cross sections from h¼ 0 (top) to h ¼ p (bottom). Results computed with the Boltzmann–BGK equation on the baseline mesh (middle) and refined mesh (right) using a P5
approximation with Nv ¼ 83. Reference solution shown on left.
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as such, this case has been used as a benchmark for scale-resolving
simulations in many works.40–45

The problem was solved using an identical domain and mesh as
the work of Vermeire et al..45 The domain extent was set as
Xx ¼ ½�10c; 20c� 
 ½�10c; 10c� 
 ½0; 0:2c�, where c is the chord
length. An unstructured hexahedral mesh was used, shown in Fig. 29,
with approximately 1:4
 105 elements and a near-wall normal mesh
spacing of Dyn � 2
 10�3. The curvature of the airfoil surface was
represented with quadratic polynomials. At the farfield, Dirichlet
boundary conditions corresponding to freestream conditions of
Re¼ 60000 and M¼ 0.3 were used. At the airfoil surface, diffuse wall
boundary conditions were used with the temperature set identically to
the freestream, and along the spanwise direction, periodicity was
enforced.

A comparison was made between the Boltzmann–BGK approach
and a standard Navier–Stokes approach using P3 and P4 approxima-
tions. We remark here that since this case is quite sensitive, particularly
so at this Mach number,46 and there is a fair amount of variation in
the reported results in the literature, we use the results of the
Navier–Stokes approach only for comparison and not necessarily as a
reference result. Given the observations drawn from the simulation of
the Taylor–Couette flow, a velocity space resolution of Nv ¼ 83 was
deemed sufficient for the Boltzmann–BGK approach. The resulting
total number of degrees of freedom for the P3 and P4 approximations
was 4.5 billion and 8.8 billion, respectively. For the P4 case, the
approximate computational cost of the Boltzmann–BGK approach
was 500 GPU hours per flow over chord (computed across 32
NVIDIA V100 GPUs) in comparison with 8 GPU hours for the
Navier–Stokes approach. To initially develop the flow, the simulations
were impulsively started at P1 and advanced until a characteristic time
of t¼ 10, nondimensionalized by the freestream velocity and chord
length, after which the approximation order was set to the operating
conditions. At t¼ 20, the flow was assumed to be well-developed and
the gathering of the flow statistics was performed over the range
t 2 ½20; 30�. For the averaged quantities to be presented, both temporal
and spanwise averaging was performed.

The profiles of the average surface pressure coefficient and skin
friction coefficient for the Boltzmann–BGK and Navier–Stokes
approaches computed with the P3 and P4 approximations are shown

in Fig. 30. It can be seen in the surface pressure coefficient profiles that
all approaches predict the pressure plateau on the suction side associ-
ated with the laminar separation bubble and the sharp adverse pressure
gradient near the reattachment point. For the Navier–Stokes results,
the pressure profiles were well-converged, with nearly identical surface
pressure coefficient distributions computed by the P3 and P4 approxi-
mations. However, the Boltzmann–BGK results showed larger discrep-
ancies with respect to the resolution, with the P3 results showing some
notable differences compared to the P4 results, which were in good
agreement with the Navier–Stokes results. Similar observations could
be drawn with the skin friction coefficient distributions, which
highlighted the differences more drastically. While the Navier–Stokes
approach showed similar results with the P3 and P4 approximation,
the Boltzmann–BGK approach showed significant differences between
the two approximation orders. At P3, the reattachment point was pre-
dicted far forward of the Navier–Stokes results, with a strong overpre-
diction of the skin friction aft of the reattachment point. However,
when the resolution was increased with the P4 approximation, the
Boltzmann–BGK results showed good agreement with the
Navier–Stokes results, with only a minor overprediction of the skin
friction aft of the reattachment point. These observations are consis-
tent with the case of the Taylor–Couette flow where it was also seen
that the accuracy of the Boltzmann–BGK approach was more affected
by spatially underresolved flows.

To evaluate the ability of the Boltzmann–BGK approach in
resolving the dominant structures in the flow, the instantaneous flow
was visualized using isocontours of Q-criterion, shown in Fig. 31 for
both the Navier–Stokes approach and the Boltzmann–BGK approach
at P4. It can be seen that the typical flow phenomena associated with
the test case could be observed in both approaches, with the laminar
separation bubble transitioning to a turbulent boundary layer and
wake. While the laminar separation region was predicted by the
Boltzmann–BGK approach quite consistently with the Navier–Stokes
approach, it can be seen that the shear layer and subsequent turbulent
boundary layer was more energized in the Boltzmann–BGK results.
These observations can also be seen in Fig. 32, which shows the aver-
age isocontours of streamwise velocity. In comparison with the
Navier–Stokes results, the Boltzmann–BGK results showed more
spreading of the contours across the shear layer, indicating a higher

FIG. 29. Cross section of the near-airfoil
region of the mesh used for the
Re¼ 60 000 SD7003 airfoil case.
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FIG. 30. Surface pressure coefficient (left) and suction-side skin friction coefficient (right) for the Re¼ 60 000 SD7003 airfoil case computed with the Navier–Stokes equations
(black) and the Boltzmann–BGK equation (red) using a P3 (dotted) and P4 (solid) approximation.

FIG. 31. Isocontour of Q-criterion colored by velocity magnitude for the Re¼ 60 000 SD7003 airfoil case computed with the Navier–Stokes equations (left) and the
Boltzmann–BGK equation (right) using a P4 approximation.

FIG. 32. Isocontours of average streamwise velocity (equispaced on the range [�0.2, 1.5]) for the Re¼ 60 000 SD7003 airfoil case computed with the Navier–Stokes equa-
tions (left) and the Boltzmann–BGK equation (right) using a P4 approximation. Red isocontour represents zero average streamwise velocity.
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degree of momentum transport. As similar observations were drawn
in the Taylor–Couette case, this indicates that for spatially underre-
solved flows, the Boltzmann–BGK approach tends to predict more
energized flow with a higher degree of momentum transport.
However, it is expected that these results would converge to the
Navier–Stokes results with increasing resolution based on the behavior
of the skin friction coefficient profiles at the two levels of resolution.

For a more quantitative comparison of the flow, the average flow
profiles were extracted at various chord-wise locations on the suction
side of the airfoil. The wall-tangential velocity profiles, computed with
respect to the surface normals at the given locations, are shown in
Fig. 33. It can be seen that across the suction side of the airfoil, both
approaches and approximation orders show notably similar velocity
profiles with respect to how much variation is shown in the reported
results in the literature. In fact, even though the Boltzmann–BGK
results show an overprediction of the height of the separation bubble,
which is consistent with the velocity contours in Fig. 32, the velocity
profiles suggest a scaling for both the Navier–Stokes and
Boltzmann–BGK results with respect to the separation bubble height.

A similar comparison was performed for the streamwise and nor-
mal velocity variance profiles, shown in Figs. 34 and 35, respectively.
The overprediction of the height of the separation bubble by the

Boltzmann–BGK approach is also evident in the variance profiles, with
the peaks of the profiles shown farther from the airfoil surface in the
region 0:1 � x=c � 0:25. However, it must be noted that these dis-
crepancies in separation bubble height were on the order of 1% of the
chord. A notably interesting observation from these variance profiles is
the effect of underresolution on the flow behavior. It can be seen that
for the Navier–Stokes results, the less-resolved case (P3) shows lower
variance in the flow, i.e., the flow is less energized. When the resolution
was increased with P4, higher variance was observed, indicating that
underresolution for the Navier–Stokes approach tends to have a dissi-
pative effect on the flow, which is expected. In contrast, the
Boltzmann–BGK results showed the complete opposite behavior.
Noticeably, more variance was observed in the less-resolved
Boltzmann–BGK results than the more resolved results, indicating that
the flow is actually more energized when underresolved; i.e., underre-
solved flow simulations via the Boltzmann–BGK approach tend to be
much less dissipative than their Navier–Stokes counterparts. It can be
seen that with increasing resolution, the magnitude of the peaks of the
variance profiles seems to be qualitatively converging between the
Boltzmann–BGK results and the Navier–Stokes results.

To quantify the differences in the momentum transport effects
between the two approaches, a comparison of the streamwise-normal

FIG. 33. Wall-tangential average velocity profiles for the Re¼ 60 000 SD7003 airfoil case at varying chord-wise locations on the suction side computed with the Navier–Stokes
equations (black) and the Boltzmann–BGK equation (red) using the P3 (dotted) and P4 (solid) approximations. Legend identical to Fig. 30. Profiles are shifted þ0, þ2, …,
þ14 along the abscissa, respectively.

FIG. 34. Streamwise velocity variance profiles for the Re¼ 60 000 SD7003 airfoil case at varying chord-wise locations on the suction side computed with the Navier–Stokes
equations (black) and the Boltzmann–BGK equation (red) using the P3 (dotted) and P4 (solid) approximations. Legend identical to Fig. 30. Profiles are shifted þ0, þ2, …,
þ14 along the abscissa, respectively, with a scaling factor of 5.
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velocity covariance was also performed, shown in Fig. 36. The overpre-
diction in the streamwise-normal velocity covariance indicative of an
overprediction in momentum transport was evident with the
Boltzmann–BGK results, particularly so with the P3 approximation
around x=c ¼ 0:25. Similar observations could be drawn for the
covariance profiles as with the variance profiles, with the less-resolved
Boltzmann–BGK results showing the highest degree of (negative)
covariance and the less-resolved Navier–Stokes results showing the
lowest. These results are consistent with the observations drawn from
the visualization of the instantaneous Q-criterion and the average
streamwise velocity isocontours.

V. DISCUSSION

Given the results of the numerical experiments performed, we
present a discussion of the overarching observations on the use of the
Boltzmann–BGK approach in this section.

A. Accuracy and consistency

Throughout our numerical experiments, it can be seen that if suf-
ficient levels of spatial and velocity domain resolution are used, the
Boltzmann–BGK approach accurately predicts complex flow physics

and momentum transfer effects for wall-bounded and shear-induced
flows. For non-equilibrium flows, the approach was validated against
both canonical test cases and more complex microchannel applica-
tions, with good results in comparison with reference data.
Additionally, we presented novel results for three-dimensional rarefied
flows in the form of the flow through a T-junction. For continuum
flows, the approach showed good agreement with analytical predic-
tions and Navier–Stokes results for fundamental flows such as laminar
boundary layers. Furthermore, the ability of the approach to accurately
predict fundamental three-dimensional hydrodynamic instabilities was
shown through the simulation of a transitional Taylor–Couette flow. A
final test case consisting of the separated flow over an SD7003 airfoil
highlighted the capability of the approach for significantly more com-
plex flow physics and discrepancies between the hydrodynamic equa-
tions and the Boltzmann–BGK approach.

B. Velocity space resolution

The results of the numerical experiments showed that for both
rarefied and continuum flows, accurate and converged results could be
obtained using very few degrees of freedom in the velocity domain. It
was observed that resolution levels of as low as eight velocity space

FIG. 35. Normal velocity variance profiles for the Re¼ 60 000 SD7003 airfoil case at varying chord-wise locations on the suction side computed with the Navier–Stokes equa-
tions (black) and the Boltzmann–BGK equation (red) using the P3 (dotted) and P4 (solid) approximations. Legend identical to Fig. 30. Profiles are shifted þ0, þ2,…, þ14
along the abscissa, respectively, with a scaling factor of 20.

FIG. 36. Streamwise-normal velocity covariance profiles for the Re¼ 60 000 SD7003 airfoil case at varying chord-wise locations on the suction side computed with the
Navier–Stokes equations (black) and the Boltzmann–BGK equation (red) using the P3 (dotted) and P4 (solid) approximations. Legend identical to Fig. 30. Profiles are shifted
þ0, þ2, …, þ14 along the abscissa, respectively, with a scaling factor of 20.
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nodes per dimension were sufficient for all numerical experiments,
from two-dimensional steady rarefied flows to three-dimensional tran-
sitional and turbulent flows. In fact, for the discrete velocity model
approach used in this work, this level of velocity space resolution is
only marginally higher than the minimum resolution needed to meet
the realizability conditions for the model (i.e., the level of resolution
needed for there to exist a solution to the nonlinear optimization prob-
lem). Furthermore, this highlights the necessity of using discretely con-
servative velocity models, such as the one implemented in this work, as
the level of resolution needed to ensure conservation to an acceptable
tolerance would be significantly higher than the level of resolution
needed to accurately predict complex flows.

C. Spatial resolution

The effect of the spatial resolution on the predictions of fluid
flows via the Boltzmann–BGK approach is arguably the most principal
finding of this work. It was observed that if the flow was spatially
well-resolved, the Boltzmann–BGK approach could accurately predict
complex hydrodynamic instabilities such as transition to turbulence
consistently with the Navier–Stokes approach of the same resolution.
However, when the flow was not spatially well-resolved, interesting dif-
ferences could be seen between the Boltzmann–BGK approach and the
Navier–Stokes approach. It was found that for spatially underresolved
flows, the Boltzmann–BGK approach would be noticeably less dissipa-
tive than its Navier–Stokes counterpart, showing a more energized
flow and spurious predictions of hydrodynamic instabilities. This is in
complete contrast to approximations of the Navier–Stokes equations,
where numerical dissipation from underresolution in the flow tends to
act as a somewhat physically consistent subgrid-scale model for the
underresolved components of the flow. The fact that these two
approaches show completely different behavior under the effect of
underresolution in the flow is not unexpected. For the Navier–Stokes
equations, numerical dissipation can directly affect the evolution of
momentum in the flow, acting as a subgrid-scale model, whereas for
the Boltzmann–BGK equation, underresolution in the spatial domain
only introduces errors in particle transport without affecting particle
collision, the actual mechanism for modeling viscous effects.
Therefore, it is expected that the arguments for intrinsic subgrid-scale
modeling via numerical dissipation (i.e., implicit large eddy simula-
tion) would not directly extend to the Boltzmann–BGK approach.

However, it must be noted that the spurious prediction of hydro-
dynamic instabilities by the Boltzmann–BGK approach may not be
baseless. As was observed with the Taylor–Couette flow, underresolved
flows computed via the Navier–Stokes equations may also show a sim-
ilar form of instability, which stems from aliasing errors. While this
numerical instability may not directly affect the Boltzmann–BGK
approach due to the linearity of the transport term, it is possible that
the predicted flow is somewhat consistent with the flow that would be
recovered by the hydrodynamic equations with the given discretization
order.

Regardless, the results indicate that to resolve complex hydrody-
namic instabilities, the accurate prediction of particle transport (i.e.,
high spatial resolution) seems to be of much higher importance than
the accurate prediction of particle collision (i.e., high velocity domain
resolution). This observation suggests that the Boltzmann–BGK
approach is better suited for highly resolved simulations (e.g., direct
numerical simulation) and that numerical methods with higher spatial

accuracy (e.g., high-order schemes) are particularly well-suited for sim-
ulating complex fluid flows via the Boltzmann–BGK equation.

D. Stability and robustness

It was observed in the numerical experiments that high-order
approximations of the Boltzmann–BGK equation were significantly
more robust and less prone to numerical stability issues than the
Navier–Stokes approach for a given mesh and problem setup. Even for
flows such as the rarefied flat plate, which should ostensibly be trivial
for the hydrodynamic equations, poor mesh quality due to the pres-
ence of large aspect ratio cells caused the Navier–Stokes approach to
diverge even at only moderately high approximation orders. In con-
trast, there were no issues with the Boltzmann–BGK approach on such
problems. Furthermore, for underresolved transitional and turbulent
flows, the Navier–Stokes equations required overintegration of the flux
term to mitigate aliasing errors stemming from the nonlinearity of the
equations. No such additional stabilization was required for the
Boltzmann–BGK approach. These observations indicate that for high-
order simulations of fluid flows, the Boltzmann–BGK approach may
be a more robust alternative to the Navier–Stokes approach.

E. Computational cost

As mentioned, the approximation of the Boltzmann–BGK equa-
tion comes with a significantly higher computational cost than the
Navier–Stokes equation. The computational cost differences between
the two can be attributed to three main sources.

First, the total degrees of freedom are significantly higher in the
Boltzmann–BGK approach due to the higher dimensionality.
However, based on the results of the numerical experiments, it appears
to be sufficient to utilize a velocity space resolution of approximately
Nv ¼ 8d , where d is the dimensionality of the problem. This results in
approximately an order of magnitude more degrees of freedom for
two-dimensional flows and two orders of magnitude more degrees of
freedom for three-dimensional flows. While this difference is substan-
tial, with the emergence of progressively larger high-performance com-
puting clusters, it is not unreasonable to attempt to solve the
Boltzmann–BGK equation for complex fluid flows. We remark that
based on our experiences with an efficient GPU implementation of the
presented numerical approach, this tends to be primarily an issue of
having enough memory to account for the increased number of
degrees of freedom. When enough memory is available, either through
parallelizing across more GPUs or through the use of GPUs with more
memory, the actual compute time tends to be very reasonable, typically
much less so than the compute time needed for a Navier–Stokes calcu-
lation of an equivalent total number of degrees of freedom. Therefore,
the computational cost associated with the large increase in total num-
ber of degrees of freedom is not as much of a problem as it may seem,
e.g., the Taylor–Couette and SD7003 cases with Oð1010Þ degrees of
freedom could be reasonably run on 32 32 GiB NVIDIA V100 GPUs.

Second, the time step restrictions between the Boltzmann–BGK
approach and the Navier–Stokes approach can drastically differ
depending on the flow regime being simulated. In the continuum limit
(a low Mach number or a high Reynolds number), the stiffness of the
collision operator in the Boltzmann–BGK approach can detrimentally
affect the maximum admissible time step for explicit discretizations.
However, for highly resolved simulations, the time step limits imposed
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by the stiffness of the source term were not drastically different than
the time step limits given by the standard CFL condition for the trans-
port term, typically well within an order of magnitude. For the
Navier–Stokes approach, the presence of second-order viscous terms
can also impose even stricter time step constraints, especially so for
well-resolved flows at higher Reynolds numbers. As such, the use of
explicit time stepping for highly resolved flow simulations via the
Boltzmann–BGK approach was not found to be significantly disadvan-
tageous in comparison with the Navier–Stokes approach.
Furthermore, in the rarefied regime, the maximum admissible time
step for the Boltzmann–BGK approach, limited by the transport term,
was typically much higher than the Navier–Stokes approach, limited
by the viscous term. In such regimes, the time step restrictions of the
Boltzmann–BGK approach were much more favorable.

Finally, the computational cost of solving one time step of the
Boltzmann–BGK equation vs. one time step of the Navier–Stokes
equations with an equivalent number of degrees of freedom can drasti-
cally differ. For the Boltzmann–BGK equation, the temporal evolution
can be represented as a simple linear advection step with a nonlinear
source term. As the transport term is first-order, there is no need to
evaluate gradients of the solution, which is a substantial cost in the
approximation of the Navier–Stokes equation. Furthermore, the com-
putation of the source term, which requires nonlinear optimization for
the discrete velocity model, is a very compute heavy task, such that it
can be implemented very efficiently on GPU computing architectures
with minimal additional cost. As such, the evaluation of a single step
of the Boltzmann–BGK equation is typically much more efficient than
the Navier–Stokes equation, where second-order viscous terms require
the evaluation of solution gradients. Additionally, the nonlinearity of
the Navier–Stokes equation can introduce further computational costs.
For underresolved flows, it is typically necessary to apply some sort of
anti-aliasing to mitigate aliasing errors, and due to the nonlinearity of
the flux term, it is required in many cases to use an adaptive time step-
ping scheme to account for the changing time step restrictions in the
flow. These numerical difficulties can further decrease the gap between
the computational cost of solving the Boltzmann–BGK equation and
the Navier–Stokes equations.

VI. CONCLUSIONS

In this work, we explore the capability of simulating complex
fluid flows via the Boltzmann–BGK equation and present a compre-
hensive validation for the effects of wall boundary conditions on
momentum transfer in the flow in the low Mach limit. The numerical
approach was first validated against canonical wall-bounded flows in
both the rarefied and continuum regimes. The approach was then
applied to more complex problems including three-dimensional rare-
fied flows and transitional/turbulent flows, the latter of which are, to
the authors’ knowledge, the first instances of such flows computed by
directly solving the Boltzmann equation. The results of the numerical
experiments indicate that the Boltzmann–BGK approach can accu-
rately predict momentum transfer and non-equilibrium effects in the
rarefied regime as well as complex hydrodynamic instabilities in the
continuum regime. It was found that to predict these flow instabilities
and momentum transfer effects in a manner consistent with the
hydrodynamic equations, a highly resolved spatial domain was of
much higher importance than a highly resolved velocity domain, indi-
cating that the accurate prediction of particle transport is more impor-
tant than the accurate prediction of particle collision and that

high-order spatial schemes may be a promising approach for effec-
tively solving the Boltzmann equation. Furthermore, it was found that
given a discretely conservative velocity model, converged results could
be obtained with very few degrees of freedom in the velocity domain,
typically as few as eight nodes per dimension. However, the behavior
of the Boltzmann–BGK approach for spatially underresolved flows
showed marked differences in comparison with the Navier–Stokes
approach, with notably less dissipation in the flow and spurious onset
of hydrodynamic instabilities, which suggests that the use of numerical
dissipation as an intrinsic subgrid-scale model for fluid flows does not
readily extend to the Boltzmann–BGK approach.

The results of this work present a validation of the
Boltzmann–BGK approach for wall-bounded flows, showcasing the
capability of the approach for simulating complex non-equilibrium
and hydrodynamic effects. Further work is necessary to comprehen-
sively evaluate the capabilities of molecular gas dynamics approaches
such as the Boltzmann equation for fluid dynamics applications,
including a validation of the approach for predicting energy transfer
effects and surface heat fluxes in the high Mach regime, shock-driven
flow instabilities and interactions, and multi-scale and high-
temperature behavior in hypersonic and high-enthalpy fluid dynamics
applications. Furthermore, as seen from the observations drawn from
the numerical experiments, there may also be a need for alternate
approaches for subgrid-scale modeling for underresolved flows.
Ultimately, the results of this work present opportunities for novel
approaches to analyzing fundamental flow phenomena such as transi-
tion to turbulence as well as developing alternate turbulence modeling
approaches through the perspective of the evolution of a particle distri-
bution function.
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