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A B S T R A C T

High-order methods and hybrid turbulence models have independently shown promise as means
of decreasing the computational cost of scale-resolving simulations. The objective of this work
is to develop the combination of these methods and analyze the effects of high-order discretiza-
tions on hybrid turbulence models, particularly with respect the optimal model parameters and
the relative accuracy benefits compared to approaches such as under-resolved direct numerical
simulation (URDNS). We employ the Partially-Averaged Navier-Stokes (PANS) approach using
the flux reconstruction scheme on the flow around a periodic hill and the wake flow of a circular
cylinder at a Reynolds number of 3900, the latter of which we provide direct numerical simu-
lation results and novel statistical analysis. By increasing the order of the discretization while
fixing the total degrees of freedom, it was observed that larger improvements in the prediction of
the statistics and flow physics were generally seen with PANS than URDNS. Furthermore, less
sensitivity to the resolution-control parameter was observed with a high-order discretization, in-
dicating that high-order discretizations may be an effective approach for increasing the accuracy
and reliability of hybrid turbulence models for scale-resolving simulations without a significant
increase in computational effort.

1. Introduction
The efficient computation of complex turbulent flows remains a driving force in the development of computational

fluid dynamics techniques. For a variety of practical engineering flows, the spatio-temporal resolution requirements
of the underlying physical phenomena make direct numerical simulation (DNS) and large eddy simulation (LES)
prohibitively expensive. Progress in this regard has generally followed two distinct paths: algorithmic advances and the
development of higher fidelity subgrid-scale models. While the former approach attempts to reduce the computational
cost, the goal of the latter is to reduce the resolution requirements without a significant detriment in accuracy.

In the context of algorithmic design, a class of methods that have seen increased usage for high-fidelity simulations
of turbulence over the past several decades are spectral element methods (SEM). These high-order methods offer the
geometric flexibility of finite volume approaches without sacrificing the arbitrarily high order of accuracy that finite
difference approaches can provide. Furthermore, due to their compact structure, they are well suited for modern mas-
sively parallel computer architectures, and when paired with the benefits of high-order accuracy such as the reduction
in numerical dissipation, can significantly decrease the computational cost required to accurately resolve turbulent
flows. Various spectral element methods have been applied to a wide variety of flows, with approaches such as the
discontinuous Galerkin (DG) [1, 2], flux reconstruction (FR) [3], and spectral difference (SD) [4, 5] methods being
commonplace. However, their application has generally focused on LES and DNS [6], and as such, they suffer from
the spatio-temporal resolution requirements of these techniques which prohibits their use for higher Reynolds number
flows.

The computationally unfeasible resolution requirements of complex flows have driven the development of higher
fidelity subgrid-scale models. There exist a large variety of options in terms of techniques for simulating fluid flows.
On one end of the spectrum, approaches such as Reynolds-Averaged Navier-Stokes (RANS) attempt to model all of the
spatio-temporal scales of the flow, doing so with relatively little computational effort. However, the effectiveness of
the approach is highly dependent on the problem and the model in question. On the other end, DNS attempts to resolve
all of the spatio-temporal scales of the flow at the expense of tremendous computational cost. This cost is slightly
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alleviated through approaches such as LES in which only the statistically significant scales are resolved, either via an
explicit approach using a filter with a subgrid-scale model or via an implicit approach using the numerical dissipation
of the scheme, the latter of which is typically denoted as implicit LES (ILES) or under-resolved DNS (URDNS).
However, the cost of these approaches generally makes them impractical for engineering applications, and as such,
there is a necessity for methods that can offer higher fidelity than RANS at a lower cost than LES. These methods are
typically denoted as scale-resolving simulation (SRS) techniques, which attempt to relax the resolution requirements
of LES without sacrificing its ability to accurately resolve the predominant flow physics. One such class of techniques
that have shown promise in this regard are hybrid turbulence models [7–11]. The intent of these SRS approaches is
generally to model less of the stochastic portion of the flow while expending more effort on resolving large scales of
dynamic importance. As a result, their computational cost tends to scale much more reasonably with respect to flow
complexity while potentially retaining many of the benefits of approaches such as LES in terms of accuracy.

The unification of high-order numerical methods and hybrid turbulence models provides a potential for significant
improvements in the computational cost of SRS. Aside from the increased fidelity provided by high-order methods,
the decrease in numerical dissipation can particularly benefit SRS methods as the excessive dissipation of low-order
schemes has a much more detrimental impact on the modeled physics in comparison to RANS-type approaches. The
application of high-order numerical methods to various turbulence models has been explored in the literature [12–
15], with the majority of these works using high-order schemes for RANS or zonal methods such as detached eddy
simulation (DES). However, the analysis on the actual effects of the high-order discretization on these turbulence
models is extremely limited, particularly for SRS with hybrid turbulence models in which the numerical dissipation
plays a more significant role and the accuracy of the discretization affects the resolution, making this analysis more
complex.

The goal of this work is therefore to analyze the effects of high-order discretizations on a hybrid turbulence model
through a single numerical framework that can recover an arbitrary order of accuracy. For this, we employ the Partially-
Averaged Navier-Stokes (PANS) approach of Girimaji [7], a bridging turbulence model, using the FR approach of
Huynh [3], a discontinuous spectral element method. We study the effects of discretization order on the optimal
resolution-control parameters, the relative accuracy benefits compared to approaches without physical models, and
how the discretization affects the ability of the model to predict the dominant flow physics and flow structures. This
analysis is performed on a wall-bounded, separated flow as well as the wake flow around a circular cylinder at a
Reynolds number of 3900, the latter of which we provide DNS results and novel statistical analysis. The remainder of
this paper is structured as follows. In Section 2, the Partially-Averaged Navier-Stokes and flux reconstruction methods
are presented, as well as implementation details and modifications to make the model more amenable to high-order
discretizations. The numerical experiments are described in Section 3 followed by the results. Conclusions are then
drawn in Section 4.

2. Methodology
2.1. Partially-Averaged Navier-Stokes Formulation

The Partially-Averaged Navier-Stokes approach is derived from the application of a filter of arbitrary width to the
Navier-Stokes equations [7]. For the compressible form, this yields second moment and source terms in the resolved
momentum and energy equations, which allow the governing PANS equations for the resolved density, momentum,
and energy to be written as

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0, (1)

𝜕
𝜕𝑡
(𝜌𝑢𝑖) +

𝜕
𝜕𝑥𝑗

(𝜌𝑢𝑖𝑢𝑗) = − 𝜕𝑃
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

[

𝜏𝑖𝑗 + 𝜏′𝑖𝑗

]

, (2)

𝜕
𝜕𝑡
(𝜌𝐸) + 𝜕

𝜕𝑥𝑗
(𝜌𝐸𝑢𝑗) = − 𝜕

𝜕𝑥𝑗
(𝑃𝑢𝑗) +

𝜕
𝜕𝑥𝑗

[

𝑢𝑖(𝜏𝑖𝑗 + 𝜏′𝑖𝑗) − 𝑞𝑗 + 𝑟′𝑗

]

, (3)

where 𝜌 is the density, 𝑢𝑖 are the velocity components, 𝜌𝐸 is the total energy, 𝛾 = 1.4 is the ratio of specific heats, and
𝑃 = (𝛾 − 1)(𝜌𝐸 − 1

2𝜌𝑢𝑖𝑢𝑖) is the pressure. The shear stress tensor 𝜏𝑖𝑗 is taken as

𝜏𝑖𝑗 = 2𝜇
[

𝑆𝑖𝑗 −
1
3
𝜕𝑢𝑘
𝜕𝑥𝑘

]

, (4)
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where 𝜇 is the dynamic viscosity and

𝑆𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

. (5)

Furthermore, the heat flux vector 𝑞𝑗 can be expressed as

𝑞𝑗 =
𝜇
𝑃 𝑟

𝜕ℎ
𝜕𝑥𝑗

, (6)

where ℎ is the specific enthalpy and 𝑃𝑟 = 0.71 is the molecular Prandtl number.
To close the PANS equations, a constitutive relation for the additional terms, 𝜏′𝑖𝑗 and 𝑟′𝑗 , is required. By invoking

the Boussinesq approximation and enforcing the conservation of unresolved turbulent kinetic energy, these terms can
be written as

𝜏′𝑖𝑗 = 2𝜇𝑢𝑆𝑖𝑗 −
2
3
𝑘𝑢𝛿𝑖𝑗 , (7)

𝑟′𝑗 = −
𝜇𝑢
𝑃𝑟𝑡

𝜕ℎ
𝜕𝑥𝑗

+
𝜕𝑘𝑢
𝜕𝑥𝑗

, (8)

where 𝜇𝑢 is the unresolved eddy viscosity, 𝑘𝑢 is the unresolved turbulent kinetic energy, and 𝑃𝑟𝑡 is the turbulent Prandtl
number. These relations create two additional unknowns, 𝜇𝑢 and 𝑘𝑢, which are determined through a modification of
an underlying RANS turbulence model. In this work, the 𝑘-𝜔 Shear Stress Transport (SST) model of Menter [16] is
used. This model is adapted to the PANS formulation as presented in Lakshmipathy and Togiti [17] and Pereira et al.
[18] by reformulating the turbulence variables into their unresolved components, defined through the relations

𝑓𝑘 =
𝑘𝑢
𝑘

and 𝑓𝜔 =
𝜔𝑢
𝜔

, (9)

where the subscript (⋅)𝑢 denotes the unresolved (i.e., modeled) component of the variable (⋅) and 𝑓(⋅) denotes the
unresolved-to-total ratio of (⋅). This formulation provides a mechanism for the PANS approach to seamlessly blend
between DNS (𝑓𝑘 = 𝑓𝜔 = 0) and URANS (𝑓𝑘 = 𝑓𝜔 = 1). The modified transport equations for the unresolved
turbulent kinetic energy 𝑘𝑢 and unresolved specific dissipation 𝜔𝑢 are given as

𝜕𝜌𝑘𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(𝜌𝑘𝑢𝑢𝑖) = 𝑃𝑘 − 𝛽∗𝜌𝑘𝑢𝜔𝑢 +
𝜕
𝜕𝑥𝑗

[

(

𝜇 + 𝜇𝑡𝜎𝑘
𝑓𝜔
𝑓𝑘

)𝜕𝑘𝑢
𝜕𝑥𝑗

]

, (10)

𝜕𝜌𝜔𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(𝜌𝜔𝑢𝑢𝑖) =
𝛼
𝜇𝑢

𝜌𝑃𝑘 − 𝜌
(

𝑃 ′ − 𝑃 ′

𝑓𝜔
+

𝛽𝜔𝑢
𝑓𝜔

)

+ 𝜕
𝜕𝑥𝑗

[

(

𝜇 + 𝜇𝑡𝜎𝜔
𝑓𝜔
𝑓𝑘

)𝜕𝜔𝑢
𝜕𝑥𝑗

]

+ 2𝜌
𝜎𝜔2
𝜔𝑢

𝑓𝜔
𝑓𝑘

(1 − 𝐹1)
𝜕𝑘𝑢
𝜕𝑥𝑗

𝜕𝜔𝑢
𝜕𝑥𝑗

, (11)

where 𝑃𝑘 = 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

and 𝑃 ′ = 𝜌𝛼𝛽∗𝑘𝑢∕𝜇𝑢. The eddy viscosity is calculated as

𝜇𝑢 =
𝜌𝛼1𝑘𝑢

max(𝛼1𝜔𝑢,Ω𝐹2)
, (12)

with the auxiliary functions defined as

𝐹1 = tanh

(

min
(

max
(

√

𝑘𝑢
𝛽∗𝜔𝑢𝑑

,
500𝜇
𝜌𝜔𝑢𝑑2

)

,
4𝜌𝜎𝜔2𝑘𝑢
𝐶𝐷𝑘𝜔𝑑2

)4
)

, (13)

𝐹2 = tanh
(

max
( 2

√

𝑘𝑢
𝛽∗𝜔𝑢𝑑

,
500𝜇
𝜌𝜔𝑢𝑑2

)2)

, (14)

𝐶𝐷𝑘𝜔 = max
(

2𝜌𝜎𝜔2
𝜔𝑢

𝜕𝑘𝑢
𝜕𝑥𝑗

𝜕𝜔𝑢
𝜕𝑥𝑗

, 10−10
)

, (15)
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Ω =
√

2𝑊𝑖𝑗𝑊𝑖𝑗 , (16)

𝑊𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

)

, (17)

for some wall distance 𝑑. The values of the free parameters are tabulated in Appendix A, and description of the
modifications applied to the PANS formulation to make it more amenable to high-order discretizations is presented in
Section 2.3. For the original SST model, these auxiliary functions were derived in terms of the relation of the turbulence
length scale and the wall distance for identifying the switch between the inner and outer parts of the boundary layer. For
the PANS calculations performed in this work, the location of the switch in the auxiliary functions is dependent on the
values of 𝑓𝑘 and 𝑓𝜔. The unresolved formulation is used in this work for consistency with other PANS implementations
in the literature [17–20]. Formulation of the auxiliary functions in terms of the total values of the turbulence variables
presents an alternate closure option but has not been attempted here.

The effectiveness of the PANS approach is ultimately reliant on the values of the resolution-control parameters 𝑓𝑘
and 𝑓𝜔. In this work, these parameters are kept constant in space and time as the presence of spatio-temporal variation
in the parameters requires additional modifications in the governing equations to account for commutation errors.
Furthermore, the two-parameter model (𝑓𝑘, 𝑓𝜔) is reduced to a one-parameter model (𝑓𝑘) through the assumption that
the length scales associated with turbulent dissipation are entirely unresolved (i.e., 𝑓𝜖 = 1) as proposed in Girimaji
and Wallin [21]. This assumption was explored in Reyes et al. [22], and from a practical perspective, was shown in
Pereira et al. [23] to be effective for most computations. Subsequently, the one-parameter model is closed through the
relation 𝑓𝜔 = 𝑓𝜖∕𝑓𝑘 = 1∕𝑓𝑘.

2.2. Spatial Discretization

(a) ℙ1 (b) ℙ3

Figure 1: Diagram of the solution point (circles, 𝐱) and interface �ux point (squares, �̂�) distributions for a ℙ1 (left) and
a ℙ3 (right) triangle element using Williams-Shunn [24] and Gauss-Legendre points, respectively.

The PANS equations were discretized using the flux reconstruction approach of Huynh [3], a generalization of the
nodal discontinuous Galerkin method [2]. We present a brief description of the FR algorithm as it relates to first-order
conservation laws, given in the form of

𝜕𝐮
𝜕𝑡

+ 𝛁 ⋅ 𝐅(𝐮) = 0 (18)

for a solution 𝐮(𝐱, 𝑡) and flux 𝐅(𝐮). In this approach, the domain (𝐱, 𝑡) ∈ Ω × ℝ+ is partitioned into 𝑁 elements Ω𝑘
such that Ω =

⋃

𝑁 Ω𝑘 and Ω𝑖 ∩ Ω𝑗 = ∅ for 𝑖 ≠ 𝑗. Within each element Ω𝑘, shown in Fig. 1, the approximate solution
�̂� is represented by a discontinuous polynomial approximation of maximal order 𝑝, formed by a nodal interpolation
through the set of 𝑞 unique nodes {𝐱1,… , 𝐱𝑞} ∈ Ω𝑘 for 𝑞 ≥ 𝑝 + 1. This interpolation is represented by

�̂� =
𝑞
∑

𝑗=1
𝐮(𝐱𝑗)𝜙𝑗(𝐱), (19)
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where 𝜙(𝐱) is a set of nodal basis functions with the property that 𝜙𝑗(𝐱𝑖) = 𝛿𝑖𝑗 . Similarly, 𝐟𝐷, a discontinuous approx-
imation of the flux 𝐅(�̂�), is formed through the collocation projection of the flux at the solution nodes.

𝐟𝐷 =
𝑞
∑

𝑗=1
𝐅(𝐮(𝑥𝑗))𝜙𝑗(𝐱). (20)

The approximate solution within each element is then evaluated at a set of 𝑟 interface points {�̂�1,… , �̂�𝑟} ∈ 𝜕Ω𝑘,
such that at each interface point, these values, in conjunction with the analogous values from the neighboring elements,
can be used to form a common interface flux 𝐟𝐼 . This is typically calculated by treating the interface value pairs as a
Riemann problem using approaches such as those of Rusanov [25] and Roe [26]. A continuous flux function 𝐟 is then
computed by adding correction terms, 𝐟𝐶 , such that the flux evaluated at the interfaces equals the common flux.

𝐟 = 𝐟𝐷 +
𝑟
∑

𝑗=1
𝐟𝐶𝑗 . (21)

These correction terms are defined as
𝐟𝐶𝑗 = (𝐟𝐼𝑗 − 𝐟𝐷𝑗 )𝐠𝑗(𝐱), (22)

where 𝐠𝑗(𝐱) denotes the 𝑗th correction function, 𝐟𝐼𝑗 denotes the common interface flux at �̂�𝑗 , and 𝐟𝐷𝑗 denotes the
discontinuous flux function evaluated at �̂�𝑗 . The correction functions have the property that

𝐧𝑖 ⋅ 𝐠𝑗(𝐱𝑖) = 𝛿𝑖𝑗 and
𝑟
∑

𝑗=1
𝐠𝑗(𝐱) ∈ RT𝑝,

where 𝐧𝑖 is the outward facing normal at 𝐱𝑖 and RT𝑝 is the Raviart-Thomas space of order 𝑝. The choice of these
functions ultimately dictates the numerical properties of the scheme [3, 27]. The corrected flux 𝐟 can then be substituted
into Eq. (18) and integrated in time using a suitable temporal integration scheme. For details on implementation and
extensions to second-order systems, the reader is referred to the work of Witherden et al. [28] and the references therein.
Within this work, we use the notation ℙ𝑝 to denote a solution approximation with maximal order 𝑝.

2.3. Numerical Implementation
Due to the inherently low numerical dissipation in high-order discretizations, several modifications were applied

to the PANS equations to ensure robustness. In the context of the transport equations for the turbulence variables,
ensuring that these variables remain positive requires adapting the formulation. For the 𝜔𝑢 transport equation, where
the variable is strictly positive, we take the approach of Ilinca and Pelletier [12] as described by Bassi et al. [13], in
which the transport equation for �̃�𝑢 = log(𝜔𝑢) is solved instead.

𝜕𝜌�̃�𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(𝜌�̃�𝑢𝑢𝑖) =
𝛼
𝜇𝑢

𝜌𝑃𝑘 − 𝜌
(

𝑃 ′ − 𝑃 ′

𝑓𝜔
+

𝛽𝑒�̃�𝑢

𝑓𝜔

)

+ 𝜕
𝜕𝑥𝑗

[

(

𝜇 + 𝜇𝑡𝜎𝜔
𝑓𝜔
𝑓𝑘

)𝜕�̃�𝑢
𝜕𝑥𝑗

]

+ 2𝜌
𝜎𝜔2
𝑒�̃�𝑢

𝑓𝜔
𝑓𝑘

(1 − 𝐹1)
𝜕𝑘𝑢
𝜕𝑥𝑗

𝜕�̃�𝑢
𝜕𝑥𝑗

. (23)

As a result, the specific dissipation term only appears in exponential form in the transport and auxiliary equations,
guaranteeing positivity. Furthermore, the distribution of the logarithm form of 𝜔𝑢 is smoother than that of 𝜔𝑢 itself
[13]. However, for 𝑘𝑢, where the variable is only non-negative, the logarithm form is not necessarily well-defined. In
contrast to the approach of Bassi et al. [13] where negative values of 𝑘 were allowed in the solution but limited to zero
in the transport and auxiliary equations, we introduce a source term 𝑆𝑘 in the 𝑘𝑢 transport equation which activates if
𝑘𝑢 falls below some small constant 𝑘𝑚𝑖𝑛, such that 𝑘𝑢 is effectively limited to 𝑘𝑚𝑖𝑛. This source term was formed via a
forward Euler approximation of 𝑘𝑢, given as

𝑆𝑛
𝑘 = max

[

0,
𝑘𝑚𝑖𝑛 − 𝑘𝑛𝑢

Δ𝑡
+ 𝛁 ⋅ 𝐅𝑛

𝑘

]

, (24)
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where 𝐅𝑘 is the 𝑘𝑢 component of the flux and the superscript 𝑛 denotes the time step. The value of 𝑘𝑚𝑖𝑛 was set to
10−8.

The PANS equations, along with these modifications, were implemented in the PyFR software package [29]. The
equations were discretized with the FR approach using a Rusanov-type [25] Riemann solver for the inviscid fluxes,
the BR2 method of Bassi and Rebay [30] for the viscous fluxes, and an explicit fourth-order Runge–Kutta scheme
for temporal integration. The velocity gradients for the viscous stress terms and turbulent kinetic energy production
terms were computed by performing the chain rule on the corrected gradients of the momentum and density. In the
numerical experiments, a comparison between a low-order and high-order FR approach was conducted. The low-order
approach was performed using ℙ1 solution polynomials, resulting in a second-order accurate scheme comparable to
a finite volume formulation. For the high-order approach, ℙ3 solution polynomials were used, resulting in a fourth-
order accurate scheme. Due to the increase in resolution afforded through higher-order representations of the solution,
the meshes used for the low-order and high-order approaches were coarsened/refined appropriately such that the total
degrees of freedom remained the same (i.e., the ℙ1 meshes used approximately 6-8 times as many elements as the ℙ3
meshes).

3. Numerical Experiments
The effects of a high-order discretization of the PANS equations were evaluated on two distinct numerical exper-

iments. The first test case, the periodic hill problem of Fröhlich et al. [31], consists of a recirculating, wall-bounded
flow through a channel with periodic constrictions, a canonical benchmark for computing separated flows. The second
test case, the flow around a circular cylinder at a Reynolds number of 3900, serves as an assessment of the methods for
problems with significantly more complex flow physics, such as laminar separation, free-shear transition, and turbulent
wakes. These assessments were performed at under-resolved to moderately-resolved levels of spatio-temporal reso-
lution, where first-order statistics can be predicted reasonably well but second-order statistics and/or dominant flow
physics may be poorly predicted. This range of resolution is where the application of hybrid turbulence models is most
practical, as accurate predictions of the flow physics are achievable while still relaxing the resolution requirements for
LES. As a result, the values of the free parameter 𝑓𝑘 were investigated over a range of 0.1 to 0.3. Furthermore, the
PANS approach was compared to an under-resolved DNS (URDNS) approach for which the same mesh and numerical
setup were used without the addition of the PANS model to give a comparable assessment of the effects of the model.
The focus of these comparisons is towards metrics that are more difficult to resolve, such as second-order statistics,
temporal properties of the flow physics, and the characteristics of the coherent structures in the flow. We reiterate that
the goal of this investigation is not to evaluate the efficacy of the PANS method, but to show the effect of high-order
discretizations for SRS using PANS and how that effect differs from approaches without any physical models.

3.1. Periodic Hill
The periodic hill problem of Fröhlich et al. [31] presents a general assessment for predicting flow separation arising

from curved surfaces and the subsequent flow reattachment. The problem consists of a channel flow with an infinite
series of smooth constrictions (hills) of height ℎ separated by a crest-to-crest distance of 9ℎ. In numerical experiments,
the infinite domain is approximated with a truncated region spanning one crest-to-crest distance with periodicity en-
forced between the inlet and outlet. A 2D cross-section of the model geometry in the streamwise-spanwise plane is
shown in Fig. 2 for this truncated region. The 3D geometry is formed by extruding the cross-section along the spanwise
direction over a length of 4.5ℎ.

Initially, a uniform flow with a Mach number of 0.1 is set throughout the domain, and the bulk Reynolds number,
based on the bulk velocity 𝑈𝑏 and height ℎ, is set to 10,595. To enforce a constant mass flow rate across the domain, a
body force in the form of an additional streamwise pressure gradient was imposed using the approach of Benocci and
Pinelli [32] as described by Wang [33], given as

(

𝑑𝑃
𝑑𝑥

)𝑛+1
=
(

𝑑𝑃
𝑑𝑥

)𝑛
− 1

𝐴𝑐Δ𝑡
(�̇�∗ − 2�̇�𝑛 + �̇�𝑛−1), (25)

where the superscript denotes the time step iteration, 𝐴𝑐 is the inlet/outlet area, and �̇� is the mass flow rate at the
inlet/outlet. The desired mass flow rate �̇�∗ was set based on the bulk Reynolds number, and the initial pressure gradient
was set to zero.
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Figure 2: Cross-section of the periodic hill geometry in the streamwise-spanwise plane (left) and mesh for the ℙ1 approach
(right).

Two structured, hexahedral meshes were generated for the periodic hill, one for the low-order (ℙ1) approach and
one for the high-order (ℙ3) approach. The low-order mesh was generated by uniformly sub-dividing the high-order
mesh along each direction. A description of the characteristics of these meshes is shown in Table 1, where 𝑁 denotes
the number of elements, 𝐷𝑂𝐹 denotes the degrees of freedom, and 𝑥, 𝑦, and 𝑧 denote the streamwise, normal, and
spanwise directions, respectively. The Δ𝑦+ value was estimated by normalizing the distance of the first solution point
to the wall by the friction velocity of a flat plate at the bulk Reynolds number. The difference in Δ𝑦+ values between the
grids results from the nonuniformity of the solution point distribution at various orders. To highlight the differences in
the predicted flow properties between the low-order and high-order approaches, significantly coarser grids were used
in the present work, using 97% fewer degrees of freedom than the LES of Fröhlich et al. [31] and 85% fewer degrees
of freedom than the low-order PANS approach of Razi et al. [34]. As such, the results are presented for 𝑓𝑘 values of
0.2 and 0.3, as through a posteriori analysis, it was shown that this resolution level does not support lower 𝑓𝑘 values.

Grid Method Order 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝐷𝑂𝐹𝑥 ×𝐷𝑂𝐹𝑦 ×𝐷𝑂𝐹𝑧 Δ𝑦+

A1 PANS/URDNS ℙ1 32 × 32 × 16 64 × 64 × 32 1.8
A2 PANS/URDNS ℙ3 16 × 16 × 8 64 × 64 × 32 1.0

Table 1: Description of mesh characteristics for the periodic hill case.

Periodic boundary conditions were imposed between the inlet and outlet as well as along the spanwise direction.
At both the top and bottom walls, no-slip, adiabatic boundary conditions were applied. Following the recommendation
of Menter [16], the boundary conditions at the wall for the turbulence variables were set as

𝑘𝑢 = 0, 𝜔𝑢 = 𝑓𝜔
60𝜈

𝛽1(Δ𝑑1)2
, (26)

where 𝛽1 is a constant defined in Appendix A and Δ𝑑1 is the wall distance. To maintain consistency in the boundary
conditions between low-order and high-order approaches in light of the nonuniformity of the solution point distribution,
the wall distance was approximated as Δ𝑑1 = Δ𝑑𝑒∕(𝑝+1), where Δ𝑑𝑒 is the height of the element and 𝑝 is the order of
the solution basis. As such, the values of the turbulence variables at the wall were identical between both approaches.
The simulation was run for a period corresponding to 20 flow-through times of the domain. After 10 flow-through
times, the flow was assumed to be fully-developed. Statistical quantities were then gathered over the final 10 flow-
through times.

After averaging the flow across the time-averaging horizon and along the spanwise direction, the first-order and
second-order statistics of the periodic hill flow were analyzed. These quantities were compared to the LES results of
Fröhlich et al. [31]. A comparison of the profiles of the average streamwise velocity as predicted by the ℙ1 and ℙ3
methods is shown in Fig. 3. For both methods, the separation of the flow aft of the hill was evident, but discrepancies in
the profiles in the separation region were observed. For the low-order method, both the PANS and URDNS approaches
overpredicted the reversal of the flow in the separation region, which resulted in notable deviations from the reference
data in the region 0 ≤ 𝑥 ≤ 5. The introduction of the PANS model did not significantly improve the low-order results.
However, for the high-order scheme, both the URDNS and PANS approaches performed significantly better, and the
𝑓𝑘 = 0.2 results were in excellent agreement with the reference data. Less deviation in the mean velocity profiles
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between the two values of 𝑓𝑘 were observed with the high-order scheme, indicating that the high-order approach is
less sensitive to the application of the PANS model than the low-order approach.
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(b) ℙ1

Figure 3: Time and span-averaged streamwise velocity pro�les using a ℙ3 (top) and ℙ1 FR scheme (bottom). Pro�les are
shifted by 0, +1, +2, ..., +8, respectively, along the abscissa.

For the second-order statistics, the differences in the predictions by the various approaches were much more evident.
In Fig. 4, the profiles of the streamwise velocity variance are shown. For both the low-order and high-order methods, the
URDNS approach significantly overpredicted the variance across most of the domain, with the largest overprediction
seen in the separation region. The change from the low-order to high-order method for the URDNS approach did not
appreciably improve the results. However, unlike URDNS, notable improvement was seen with the PANS approach
when switching from the low-order method to the high-order method. Excellent agreement was observed between the
high-order PANS approach and the reference data for both values of 𝑓𝑘, whereas the accuracy of the low-order PANS
approach was comparable to the URDNS approaches. As with the first-order statistics, significantly less deviation in
the results was observed between the two 𝑓𝑘 values when using the high-order scheme.

The profiles of the normal velocity variance are shown in Fig. 5. For the low-order method, poor agreement with the
reference data was generally observed for both PANS and URDNS, with the PANS approach underpredicting the vari-
ance in the separation region and the URDNS approach overpredicting the variance outside of the separation region.
However, outside of the separation region, the prediction by the low-order PANS approach significantly improved.
When switching to the high-order method, the results of the URDNS approach degraded, with large oscillations ob-
served in the variance profiles. This effect can likely be attributed to aliasing-driven instabilities evident in high-order
approximations of under-resolved turbulent flows, which can introduce spurious high-frequency oscillations in the
flow that are more evident in higher-order statistics [35]. When using the high-order method for the PANS approach,
this effect was not seen, likely due to the suppression of aliasing errors as a result of the introduction of a physically
appropriate eddy viscosity. Furthermore, significant improvements were observed in the variance profiles between the
low-order and high-order PANS approaches, with the high-order PANS profiles showing excellent agreement with the
reference data for both 𝑓𝑘 values and notably less deviation in the results between different 𝑓𝑘 values.

Similar observations were seen in the streamwise-normal velocity covariance profiles, shown in Fig. 6. No appre-
ciable improvement in the covariance profiles was observed when switching from low-order to high-order URDNS,
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Figure 4: Time and span-averaged streamwise velocity variance pro�les using a ℙ3 (top) and ℙ1 FR scheme (bottom).
Pro�les are scaled by a factor of 8 and shifted by 0, +1, +2, ..., +8, respectively, along the abscissa.

with the high-order approach showing better results in the separation region but at the expense of spurious oscillations
outside of the separation region as in Fig. 5. The low-order PANS approach showed reasonable results outside of the
separation region with 𝑓𝑘 = 0.3, but underpredicted the magnitude of the covariance aft of the separation point for both
values of 𝑓𝑘. The high-order PANS approach showed good agreement with the reference data for both 𝑓𝑘 values, with
significantly better prediction within the separation region and monotonic covariance profiles outside of the separation
region. The decrease in sensitivity to the 𝑓𝑘 parameter when switching to the high-order approach was not as evident
for the streamwise-normal velocity covariance as it was with the streamwise and normal variance.

3.2. Cylinder
Due to the variety of physical phenomena that appear, the flow around a circular cylinder is of interest for many

applications in fluid dynamics. At moderately-low Reynolds numbers (400-5000), the flow lies in a subcritical regime
where the transition of the laminar shear layer to a turbulent wake presents a challenge for numerical studies as the
flow physics are very sensitive to the methods used which can lead to significant discrepancies in the results between
various approaches [36]. The flow at a Reynolds number (𝑅𝑒𝐷) of 3900, based on the freestream velocity 𝑈∞ and
cylinder diameter 𝐷, lies in this regime, and as such, there exists vast amounts of numerical and experimental data
for this configuration [36–41]. This problem was explored to conduct a comparison between low-order and high-order
PANS and URDNS methods for resolving more complex flow physics. These results were compared to experimental
and numerical data, and a DNS study was performed to provide additional data for comparison that was not available
in the literature. The comparisons were carried out at levels of resolution which can be considered to be "moderately-
resolved", where the prediction of first-order statistics can be done to a reasonable accuracy without turbulence mod-
eling (i.e., implicit LES/under-resolved DNS). As such, the metric for comparison between the methods was their
ability to resolve the more complex flow physics of the problem, such as the vortex shedding and Kelvin–Helmholtz
frequencies and the presence of coherent turbulent structures in the wake.

The simulations were performed using a C-grid domain on [𝑥∕𝐷, 𝑦∕𝐷, 𝑧∕𝐷] ∈ [−10, 25] × [−10, 10] × [0, 𝜋],
where 𝑥, 𝑦, and 𝑧 denote the streamwise, normal, and spanwise directions, respectively. The domain and grid are
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Figure 5: Time and span-averaged normal velocity variance pro�les using a ℙ3 (top) and ℙ1 FR scheme (bottom). Pro�les
are scaled by a factor of 15 and shifted by 0, +1, +2, ..., +8, respectively, along the abscissa.

shown in Fig. 7. At the cylinder surface, a no-slip, adiabatic wall boundary condition was applied, with the turbulence
variables taking on the values in Eq. (26). Periodic boundary conditions were applied along the spanwise direction.
At the inlet, a uniform density and momentum were fixed, and the turbulence variables were set according to Menter
[16] as

𝑘𝑢 = 10−3𝑓𝑘
𝑈2
∞

𝑅𝑒𝐷
, 𝜔𝑢 = 𝑓𝜔

𝑈∞
𝐷

. (27)

At the outlet, the pressure was set to a fixed value corresponding to a Mach number of 0.1 while the remaining variables
were free. For all simulations, the flow was assumed to be fully developed after 𝑡 = 𝐷∕𝑈∞ = 100, after which statistical
quantities were gathered and analyzed until 𝑡 = 𝐷∕𝑈∞ = 300.

Three unstructured, prismatic grids were generated by extruding a 2D, triangular grid along the spanwise axis, one
for the low-order (ℙ1) PANS/URDNS approaches, one for the high-order (ℙ3) PANS/URDNS approaches, and one
for the DNS. A description of the characteristics of these meshes is shown in Table 2, where 𝑁 denotes the number of
elements and 𝐷𝑂𝐹 denotes the degrees of freedom. The values corresponding to the unstructured, triangular elements
in the streamwise-normal plane are denoted by the subscript 𝑥𝑦 while the values corresponding to the structured
extrusion along the spanwise direction are denoted by the subscript 𝑧. The low-order mesh was generated by uniformly
sub-dividing the high-order mesh along each direction. As a result of the subdivision of the triangular surfaces, the
low-order mesh had approximately 20% more degrees of freedom than the high-order mesh. In comparison to the
low-order PANS approach used for this configuration in Pereira et al. [11], the grids in the present work consist of
approximately 20-30% fewer degrees of freedom.

The DNS study was performed using a ℙ3 approximation with roughly 55.6 million degrees of freedom and an
identical problem configuration (excluding the turbulence model). Through a posteriori analysis, the minimum Kol-
mogorov length scale in the domain was found to be 𝜂∕𝐷 = 0.011. Therefore, this resolution was sufficient to achieve
a Δ𝑠𝑥𝑦∕𝜂 ratio between 0.25 and 0.83 for 𝑥∕𝐷 < 10, where Δ𝑠𝑥𝑦 is the average subcell size within an element in the
streamwise-normal plane. Furthermore, the Δ𝑠𝑧∕𝜂 ratio was 0.85, where Δ𝑠𝑧 is the average subcell size within an
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Figure 6: Time and span-averaged (negative) streamwise-normal velocity covariance pro�les using a ℙ3 (top) and ℙ1 FR
scheme (bottom). Pro�les are scaled by a factor of -25 and shifted by 0, +1, +2, ..., +8, respectively, along the abscissa.

25𝐷

10𝐷

(a) Geometry (b) Mesh

Figure 7: Cross-section of the cylinder geometry in the streamwise-spanwise plane (left) and mesh for the ℙ3 approach
in the cylinder wake region (right).

Grid Method Order 𝑁𝑥𝑦 ×𝑁𝑧 𝐷𝑂𝐹𝑥𝑦 ×𝐷𝑂𝐹𝑧

B1 PANS/URDNS ℙ1 26, 000 × 20 78, 000 × 40
B2 PANS/URDNS ℙ3 6, 500 × 10 65, 000 × 40
B3 DNS ℙ3 58, 000 × 24 580, 000 × 96

Table 2: Description of mesh characteristics for the cylinder case.
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element in the spanwise direction. The results of the DNS study were used to perform a Proper Orthogonal Decompo-
sition (POD) analysis to identify the presence of coherent turbulent structures which may not be evident in the first and
second-order statistics. This method, described in detail in Appendix B, was used to characterize the time-dependent
velocity field by a set of orthonormal spatial modes, such that the modes containing the most energy corresponded to
the most dominant features in the flow field. To evaluate the ability of the various approaches in this work in predict-
ing the dominant flow physics of the problem, the highest energy mode of the streamwise velocity fluctuations was
compared to the DNS results.

After averaging across the time-averaging horizon and along the spanwise direction, the PANS and URDNS ap-
proaches were compared to the DNS results of the present work, the LES results of Parnaudeau et al. [36], and the
LES results of Witherden et al. [38]. For comparison with the work of Witherden et al. [38] where individual data
is presented for the two distinct shedding modes across a large time horizon, we take the average of the two modes.
These results were analyzed with respect to the first and second-order statistics, frequency spectra, and POD modes.

The profiles of the averaged centerline streamwise velocity are shown in Fig. 8 in comparison to the reference
data. Between all of the approaches, reasonable approximations of the centerline streamwise velocity were obtained
when taking into account the variation in the reference results. For the URDNS approaches, the low-order method
overpredicted the edge of the recirculation region, but this was remedied with the high-order method. For the PANS
approaches, the effects of the higher-order discretization were not immediately evident. With the low-order method,
the efficacy of the PANS model was sensitive to the value of 𝑓𝑘, with 𝑓𝑘 = 0.1 showing reasonable agreement with the
LES of Parnaudeau et al. [36] and 𝑓𝑘 = 0.3 showing reasonable agreement with the DNS results. With the high-order
method, less variation of the results with respect to 𝑓𝑘 was seen. Excellent agreement between the 𝑓𝑘 = 0.1 results
and the LES of Witherden et al. [38] was observed. The introduction of the PANS model generally prolonged the
recirculation region with the high-order method, whereas for the low-order method, the effect was not clear.
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Figure 8: Time and span-averaged streamwise velocity pro�les along the centerline (𝑦∕𝐷 = 0).

The averaged streamwise and normal velocity profiles at 𝑥∕𝐷 = 1.06, 1.54, and 2.02 are shown in Fig. 9. For
the streamwise velocity profiles at 𝑥∕𝐷 = 1.06 and 1.54, minimal differences were observed between the low-order
and high-order PANS and URDNS approaches, with all methods showing reasonable agreement with the reference
data. At 𝑥∕𝐷 = 2.02, effects similar to the centerline velocity profiles were seen, where the sensitivity of the PANS
approach to the 𝑓𝑘 parameter decreased with the use of the high-order approach. For the normal velocity profiles,
the differences between the various approaches were most evident at 𝑥∕𝐷 = 1.54 but without clear distinction in the
effects of higher-order discretizations on the PANS and URDNS approaches. Across the range of sampling locations,
the best accuracy for the low-order approach was observed with 𝑓𝑘 = 0.3, showing good agreement with the DNS
results, and the best accuracy for the high-order approach was observed with 𝑓𝑘 = 0.1, showing excellent agreement
with the LES of Witherden et al. [38]. This observation is consistent with the PANS methodology, as the increase in
fidelity afforded by high-order methods coincides with a decrease in the unresolved portion of the flow.

The application of a RANS-type turbulence model to a flow governed by a laminar boundary layer may enforce
the boundary layer to be turbulent even for a relatively low Reynolds number flow. For a hybrid turbulence model
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such as PANS, it is not immediately obvious whether this effect occurs. To verify that the boundary layer was indeed
laminar, the distribution of 𝑘𝑢 near the cylinder surface was examined. The maximum value of 𝑘𝑢 in this region was
approximately 10−4𝑓𝑘𝑈2

∞, on par with the freestream value of 𝑘𝑢, such that the boundary layer was effectively laminar.
For the second-order statistics, the streamwise and normal velocity variance profiles as well as the streamwise-

normal velocity covariance profiles at 𝑥∕𝐷 = 1.06, 1.54, and 2.02 are shown in Fig. 10. Between the various quantities
and locations, the effects of the PANS model as well as the order of approximation were not consistent. Overall,
although the low-order and high-order URDNS approach gave reasonable approximations of the second-order statistics
at 𝑥∕𝐷 = 1.06, the effects of the discretization as well as the introduction of the PANS model were more evident further
away from the cylinder. Except for the case of 𝑓𝑘 = 0.3, the switch from a low-order to a high-order approach generally
tended to increase the magnitude of the second-order statistics, likely due to the decrease in numerical dissipation.
The accuracy of the discretization did not necessarily affect the accuracy of the second-order statistics, but instead it
primarily impacted the optimal value of 𝑓𝑘, with the low-order approach showing optimal results at 𝑓𝑘 = 0.3 and the
high-order approach showing optimal results at 𝑓𝑘 = 0.1.

Due to the relative resolution of the grids, the first and second-order statistics were captured reasonably well across
the various approaches used. For a more extensive comparison of these approaches, we instead focus on the flow
physics and the characteristics of the coherent structures of the flow. The power spectra of the centerline normal ve-
locity fluctuations at 𝑥∕𝐷 = 3 and 𝑥∕𝐷 = 7 were analyzed to evaluate the ability of the various methods to predict the
frequencies of the vortex shedding and Kelvin–Helmholtz instabilities, as shown in Fig. 11 and Fig. 12. From the DNS
results, the Strouhal number was determined to be 𝑆𝑡 = 0.209, which is in agreement with the numerical and experi-
mental results of Parnaudeau et al. [36], and the frequency of the Kelvin–Helmholtz instability was determined to be
𝑓𝐾𝐻 = 0.668. At 𝑥∕𝐷 = 3, the frequency spectra of the low-order approaches showed two distinct peaks correspond-
ing to the vortex shedding and Kelvin–Helmholtz frequencies. However, the peak frequencies were overpredicted by
roughly 10% and 6% for the vortex shedding and Kelvin–Helmholtz frequencies, respectively. Furthermore, except for
the 𝑓𝑘 = 0.3 case where the peak of the Kelvin–Helmholtz instability was prominent, the low-order methods generally
did not adequately resolve the frequency of the Kelvin–Helmholtz instability. For the high-order methods, the frequen-
cies of the vortex shedding and Kelvin–Helmholtz instability were inline with the DNS results. A more substantial
improvement in the PANS results was observed in comparison to the URDNS results. For all values of 𝑓𝑘, both of
the peaks were significantly more prominent than in the URDNS spectra where the peaks were distributed across a
larger frequency range. Additionally, there was notably less sensitivity in the spectra to the 𝑓𝑘 parameter with the
high-order method than the low-order method, with 𝑓𝑘 = 0.1 showing excellent agreement with the DNS results and
𝑓𝑘 = 0.2 − 0.3 showing reasonable agreement.

At 𝑥∕𝐷 = 7, where the propagation of the flow over a larger computational domain presents more challenges in
resolving capability, these effects were amplified. The low-order approaches again overpredicted the vortex shedding
and Kelvin–Helmholtz frequencies, but at this position further away from the cylinder, the Kelvin–Helmholtz frequency
was not prominently resolved by neither URDNS nor the PANS approaches. With the high-order method, an even
proportionally larger improvement was observed in the PANS approaches than the URDNS approach at this position.
The URDNS approach did not adequately resolve the Kelvin–Helmholtz frequency and the peak of the vortex shedding
frequency was distributed across a larger frequency range. However, the accuracy of the high-order PANS approaches
did not deteriorate, with both the vortex shedding and Kelvin–Helmholtz frequencies prominently resolved and the
spectra for all values of 𝑓𝑘 showing good agreement with the DNS results.

For an evaluation of the ability of the various methods in predicting the coherent structures in the flow, the primary
POD mode of the streamwise velocity fluctuations was compared, shown in Fig. 13. The primary POD mode from the
DNS results depicts regions of strong correlation that are anti-symmetric across the centerline, indicative of anti-phased
vortex shedding. Strong correlations in the separation region between 𝑥∕𝐷 = 2 and 𝑥∕𝐷 = 3 were observed as well as
along the shear line emanating from the cylinder surface. Further along the wake, these correlated regions became less
concentrated. Between the various approaches, the primary differences were in the positioning and shape of the strongly
correlated region in the wake (i.e., the vortex shedding region) and the presence of the strongly correlated region in
the shear layer. For the low-order method, the POD modes as predicted by the URDNS and PANS approaches only
appreciably differed in the location of the vortex shedding region. Both approaches predicted this location farther aft of
the DNS results regardless of the value of 𝑓𝑘, with the overprediction ranging monotonically from the minimum with
the URDNS approach to the maximum with 𝑓𝑘 = 0.3. Furthermore, neither the PANS nor the URDNS approaches
replicated the circular shape of the vortex shedding region effectively, and the presence of a strongly correlated region
in the shear layer was not seen. With the high-order method, these issues were generally rectified, with all approaches
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showing reasonable agreement with the DNS results in terms of the shape of the vortex shedding region and the
presence of the strongly correlated region in the shear layer. As with the low-order method, the differences between
the URDNS and PANS approaches were primarily with respect to the location of the vortex shedding region. The
URDNS approach predicted this region much closer to the cylinder in comparison to the DNS results, whereas the
PANS approaches generally showed good agreement with the DNS results. Due to the low variation in the results
between various 𝑓𝑘 values, no significant decrease in sensitivity to the 𝑓𝑘 parameter was observed with the high-order
approach.
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Figure 9: Time and span-averaged streamwise (left) and normal (right) velocity pro�les at 𝑥∕𝐷 = 1.06, 1.54, and 2.02
using a ℙ3 (solid line) and ℙ1 FR scheme (dotted line).
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Figure 10: Time and span-averaged streamwise velocity variance (left), normal velocity variance (middle), and streamwise-
normal velocity covariance (right) pro�les at 𝑥∕𝐷 = 1.06, 1.54, and 2.02 using a ℙ3 (solid line) and ℙ1 FR scheme (dotted
line).

T. Dzanic et al.: Preprint submitted to Elsevier Page 16 of 23



PANS Simulations of Turbulence Within a High-Order FR Framework

10−1 100 101

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

− 5
3

𝑓

𝐸
𝑣(
𝑓
)

DNS

URDNS

𝑓𝑘 = 0.1
𝑓𝑘 = 0.2
𝑓𝑘 = 0.3

(a) ℙ3

10−1 100 101

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

− 5
3

𝑓

𝐸
𝑣(
𝑓
)

DNS

URDNS

𝑓𝑘 = 0.1
𝑓𝑘 = 0.2
𝑓𝑘 = 0.3

(b) ℙ1

Figure 11: Power spectra of the centerline normal velocity �uctuations at 𝑥∕𝐷 = 3. A scaling factor of 10−3 is applied
between pro�les. The frequency is nondimensionalized by 𝐷∕𝑈∞.
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Figure 12: Power spectra of the centerline normal velocity �uctuations at 𝑥∕𝐷 = 7. A scaling factor of 10−3 is applied
between pro�les. The frequency is nondimensionalized by 𝐷∕𝑈∞.

T. Dzanic et al.: Preprint submitted to Elsevier Page 18 of 23



PANS Simulations of Turbulence Within a High-Order FR Framework

(a) DNS (b) DNS

(c) ℙ3 URDNS (d) ℙ1 URDNS

(e) ℙ3 𝑓𝑘 = 0.1 (f) ℙ1 𝑓𝑘 = 0.1

(g) ℙ3 𝑓𝑘 = 0.2 (h) ℙ1 𝑓𝑘 = 0.2

(i) ℙ3 𝑓𝑘 = 0.3 (j) ℙ1 𝑓𝑘 = 0.3

Figure 13: Isocontour maps of the primary POD mode of the streamwise velocity. Contour lines represent 20 equispaced
subdivisions across the range. DNS results are repeated across the top row.

T. Dzanic et al.: Preprint submitted to Elsevier Page 19 of 23



PANS Simulations of Turbulence Within a High-Order FR Framework

4. Conclusion
In this work, the effects of high-order discretizations on a hybrid turbulence model were explored in the context of

scale-resolving simulations of turbulent flows. The PANS approach was discretized using the FR scheme and employed
on two canonical benchmarks: the wall-bounded, separated flow around a periodic hill and the wake flow around a
circular cylinder at 𝑅𝑒 = 3900. By varying the order of the approximation while fixing the total degrees of freedom,
the effects of the discretization error on the PANS approach was independently investigated and compared to under-
resolved DNS approaches.

In general, the switch from a low-order to a high-order approximation tended to proportionally improve both the
URDNS and PANS approaches equally with respect to the first-order statistics. However, for highly under-resolved
simulations such as the periodic hill in the present work, the high-order discretization improved the PANS prediction of
the second-order statistics notably more than the URDNS prediction. For the more complex wake flow problem around
the cylinder, the grid resolution was proportionally higher, and therefore the focus of the comparison was placed on the
prediction of the flow physics since the first and second-order statistics could be reasonably approximated regardless of
the methods used. The prediction of the flow physics improved significantly more through a high-order approximation
using PANS than with URDNS, with much better prediction of the frequencies of the vortex shedding and Kelvin-
Helmholtz instabilities, especially at distances farther along the wake. Furthermore, high-order approximations of
the PANS approach showed a larger improvement in the prediction of the dominant POD mode of the streamwise
velocity than high-order approximations of the URDNS approach. The use of a high-order approach increased the
computational cost in comparison to a low-order approach with the same degrees of freedom. This was primarily due
to the decrease in the maximum time step allowed for an explicit time integration scheme, resulting in an approximately
a 20% smaller time step. However, due to the significantly better resolution capability of the high-order approach, the
relative computational cost for a given accuracy was significantly lower for both the PANS and URDNS methods.

Overall, high-order approximations tended to benefit the PANS approach proportionally more than the URDNS
approach, as larger improvements in the prediction of the statistics and flow physics were generally seen with PANS.
These benefits were attributed to the lower numerical dissipation of the high-order schemes, which allowed for better
resolution of the small-scale features predicted by the model equations that can be dissipated by low-order schemes.
Additionally, less sensitivity to the resolution-control parameter was observed with the high-order PANS approach,
resulting in less variation in the predictions than with the low-order approximation. These findings indicate that high-
order discretizations may be an effective approach for increasing the accuracy and reliability of hybrid turbulence
models for scale-resolving simulations without a significant increase in computational effort.
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A. Turbulence Model Parameters
The constants for the SST model are as tabulated by Menter [16]. Certain constants in the SST model are defined

with an inner (1) and outer (2) constant, such that its value is defined as

𝜙 = 𝐹1𝜙1 + (1 − 𝐹1)𝜙2

for the following inner and outer values

𝛼1 = 0.5532, 𝛼2 = 0.4403,
𝛽1 = 0.075, 𝛽2 = 0.0828,
𝜎𝑘1 = 0.85, 𝜎𝑘2 = 1.0,
𝜎𝜔1 = 0.5, 𝜎𝜔2 = 0.856.

The remaining constants are explicitly defined as

𝑎1 = 0.31, 𝛽∗ = 0.09, 𝑃 𝑟𝑡 = 0.9.

B. Proper Orthogonal Decomposition
The POD method, as described by Weiss [42], can be used to decompose a time-dependent velocity fluctuation

field, 𝑢′(𝐱, 𝑡), into a set of orthonormal spatial modes, Φ𝑘(𝐱), such that

𝑢′(𝐱, 𝑡) =
∞
∑

𝑘=1
𝑎𝑘(𝑡)Φ𝑘(𝐱), (28)

for some temporal coefficient 𝑎𝑘(𝑡). In the discrete form, this is performed by first forming a matrix of "snapshots" of
the solution,

𝐔 =

⎛

⎜

⎜

⎜

⎝

𝑢11 … 𝑢1𝑛
𝑢21 … 𝑢2𝑛
⋮ ⋱ ⋮
𝑢𝑚1 … 𝑢𝑚𝑛

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑢′(𝐱1, 𝑡1) … 𝑢′(𝐱𝑛, 𝑡1)
𝑢′(𝐱1, 𝑡2) … 𝑢′(𝐱𝑛, 𝑡2)

⋮ ⋱ ⋮
𝑢′(𝐱1, 𝑡𝑚) … 𝑢′(𝐱𝑛, 𝑡𝑚)

⎞

⎟

⎟

⎟

⎠

, (29)

where 𝑛 denotes the number of sample points in space and𝑚 denotes the number of sample points in time. A correlation
matrix 𝐂 can then be defined as

𝐂 = 1
𝑚 − 1

𝐔𝐔𝑇 . (30)

By performing an eigendecomposition of 𝐂, a set of eigenvectors 𝚿𝑘 and their associated eigenvalues 𝜆𝑘 can be
extracted and sorted such that |𝜆𝑘| > |𝜆𝑘+1|. The spatial modes are then defined as

𝚽𝑘 = 𝐔𝑇𝚿𝑘 (31)

and normalized such that ‖𝚽𝑘‖2 = 1.
In this work, the snapshots were formed by resampling the flow field to a two-dimensional grid on the spanwise

periodic boundary. 800 and 200 points were sampled in the streamwise and normal directions, respectively, and 20,000
snapshots were obtained over the time-averaging horizon, corresponding to values of 𝑛 = 160, 000 and 𝑚 = 20, 000.
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