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A B S T R A C T
We introduce DynAMO, a reinforcement learning paradigm for Dynamic Anticipatory Mesh
Optimization. Adaptive mesh refinement is an effective tool for optimizing computational cost
and solution accuracy in numerical methods for partial differential equations. However, tradi-
tional adaptive mesh refinement approaches for time-dependent problems typically rely only on
instantaneous error indicators to guide adaptivity. As a result, standard strategies often require
frequent remeshing to maintain accuracy. In the DynAMO approach, multi-agent reinforcement
learning is used to discover new local refinement policies that can anticipate and respond to fu-
ture solution states by producing meshes that deliver more accurate solutions for longer time
intervals. By applying DynAMO to discontinuous Galerkin methods for the linear advection
and compressible Euler equations in two dimensions, we demonstrate that this new mesh refine-
ment paradigm can outperform conventional threshold-based strategies while also generalizing
to different mesh sizes, remeshing and simulation times, and initial conditions.

1. Introduction
The numerical approximation of partial differential equations (PDEs) has broadly relied on discretization tech-

niques such as finite volume, finite difference, and finite element methods. These techniques present a general frame-
work for targeting a wide variety of governing equations arising in engineering and scientific applications. While
their formulations and numerical properties vary, the methods above share the common task of effectively discretizing
the problem domain onto a mesh upon which the governing equations can be solved numerically. In many applica-
tions, mesh discretization has a considerable impact on accuracy and efficiency. In particular, for systems with a large
spatio-temporal variation of scales — e.g., systems with regions of steep gradients and small-scale features that re-
quire high resolution — the use of a uniform mesh discretization can result in an exceedingly inefficient numerical
approximation. These multi-scale systems are common in scientific and engineering applications, with a wide variety
of examples ranging from within fluid dynamics and astrophysics to solid mechanics and bioengineering [1–5]. An
efficient treatment of these problems often requires some form of adaptive mesh refinement (AMR).

AMR strategies aim to balance computational cost and solution accuracy by selectively increasing the resolution
of the mesh in regions where the largest discretization errors are generated while keeping the resolution low in re-
gions where the errors are sufficiently small. Ideally, the end result achieves maximal error reduction with minimal
computational cost. AMR is widely used to solve PDEs, with the typical approach involving some form of an instan-
taneous error indicator to dictate which mesh elements are to be refined and/or coarsened (i.e., de-refined). However,
a long-standing limitation of AMR strategies for time-dependent PDEs lies in the general observation that optimizing
a mesh for computational errors at a fixed point in time will deliver a mesh that is suboptimal at future times. Indeed,
adapted meshes can quickly become inadequate as a system evolves and introduce large errors to the discrete solution
that persist indefinitely. To mitigate this effect, it is often necessary to compute with a dynamic mesh that is re-adapted
frequently. Unfortunately, the computational cost associated with mesh adaptation is not negligible and can quickly
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negate the practical benefits of AMR unless the refinement frequency is low and the solution does not vary much over
the time period between re-adaptation steps.

The core belief motivating this work is that a more effective dynamic AMR paradigm can be achieved with anticipa-
tory refinement. Namely, we seek a refinement strategy to predict future error propagation and respond by preemptively
refining the mesh. Compared to standard AMR approaches based only on instantaneous indicators, an anticipatory re-
finement strategy has the potential to achieve far superior accuracy and performance owing to its ability to refine the
mesh before future discretization errors appear. Most importantly, this would allow for longer time intervals between
mesh adaptation, which is particularly beneficial for compute architectures where bandwidth is the bottleneck.

Developing an anticipatory refinement strategy for time-dependent PDEs presents significant challenges. Except
for trivial governing equations for which analytic solutions exist, the future spatio-temporal behavior of a PDE solution
is not known a priori, and directly predicting the evolution of the error is computationally infeasible. Instead of trying
to directly predict the behavior of the error by techniques such as solving an adjoint problem [6], we find that using sur-
rogate models to approximate the error evolution offers a more tractable approach. One such approach is through error
transport equations of Tyson et al. [7], which present an evolution equation for the error functional [8–10], or through
even simple retrospective error estimates based on re-propagating the solution and measuring the error evolution. Fur-
ther within the realm of surrogate modeling, machine learning (ML) techniques have shown promise as an effective
tool for error estimation [11, 12]. This success has driven efforts towards combing ML and AMR techniques, with the
earliest works dating as far back as the early 1990s [13]. To date, ML has been used to design marking strategies [14–
17], goal-oriented AMR techniques [18–21], and mesh density function-based mesh adaptation [13, 22–27]. However,
an effective anticipatory refinement strategy for time-dependent PDEs requires optimizing long-term objectives, i.e.,
solution accuracy/cost over time. This in itself is a sequential decision-making problem as this objective at any given
time is dependent on all of the refinement decisions leading up to that point. For this class of problems, reinforcement
learning (RL) methods have shown promise as they are inherently tailored towards optimizing long-term objectives.
The use of RL for AMR was first proposed in Yang et al. [28], where RL methods with variable-size global state and
action spaces were applied to account for the changing mesh topology. This approach was further investigated in Yang
et al. [29], where the authors used a multi-agent graph neural network with a team reward to generalize to arbitrary
unstructured meshes, in Freymuth et al. [30], where local individual rewards were used to produce higher refinement
levels, and in Foucart et al. [31], where AMR was formulated as a partially observable Markov decision process in
which a single agent applied to each element can observe only local surrounding information. For all of these works,
AMR via RL was applied to scalar linear time-dependent or stationary PDEs.

Given the potential of RL for optimizing long-term objectives in complex environments, the goal of this work is to
introduce DynAMO, a new reinforcement learning paradigm for Dynamic Anticipatory Mesh Optimization, in order to
establish and explore the feasibility of using RL to guide anticipatory mesh refinement strategies for complex nonlinear
systems of PDEs. In particular, we look at learning refinement strategies for discontinuous Galerkin finite element
methods (FEMs), including ℎ-refinement and 𝑝-refinement, for general hyperbolic conservation laws, with applications
to the linear advection equation and the compressible Euler equations. Due to the local domain of influence of these
governing equations, we consider a decentralized partially observable Markov decision process model of dynamic
mesh optimization through a multi-agent reinforcement learning viewpoint, with independent agents corresponding
to elements in the mesh that observe local surrounding information. Furthermore, we introduce novel and highly
generalizable observations and reward functions that 1) enable anticipatory mesh refinement for arbitrary nonlinear
hyperbolic conservation laws without analytic solutions; 2) show invariance to problem scale and mesh resolution; and
3) allow for user-controlled error/cost targets at evaluation time. We demonstrate the efficacy of DynAMO in multi-
dimensional numerical experiments ranging from simple linear transport to complex nonlinear shock interactions, thus
establishing that anticipatory refinement can unlock levels of efficiency that have remained out of reach with previous,
conventional AMR techniques.

The remainder of this manuscript is organized as follows. In Section 2, some background material on the overar-
ching topic of this work is presented, including an overview of hyperbolic conservation laws, finite element methods,
adaptive mesh refinement, and reinforcement learning. An in-depth description of the proposed DynAMO approach
is given in Section 3, followed by numerical implementation details in Section 4. The results of the numerical exper-
iments for ℎ- and 𝑝-refinement on the advection and Euler equations are then shown in Section 5, after which we use
Section 6 to draw our final conclusions.
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2. Preliminaries
In this section, we present overviews of hyperbolic conservation laws, finite element methods, adaptive mesh

refinement, and reinforcement learning that are necessary for the subsequent sections.
2.1. Hyperbolic conservation laws

The primary applications of this work pertain to approximations of hyperbolic conservation laws of the form
{

𝜕𝑡𝐮 + 𝛁⋅𝐅(𝐮) = 𝟎, for (𝐱, 𝑡) ∈ Ω ×ℝ+,
𝐮(𝐱, 0) = 𝐮0(𝐱), for 𝐱 ∈ Ω,

(1)

where Ω ⊂ ℝ𝑑 is a 𝑑-dimensional spatial domain, 𝐮 ∈ ℝ𝑚 is a solution of 𝑚 variables, and 𝐅(𝐮) ∈ ℝ𝑚×𝑑 is the
associated flux. We consider both linear scalar conservation laws as well as nonlinear systems of equations. For the
former, the quintessential example is the scalar advection equation, given as

𝜕𝑡𝑢 + 𝛁⋅ (𝐜𝑢) = 0, (2)
where 𝐜 ∈ ℝ𝑑 is some constant velocity. For the latter, the compressible Euler equations of gas dynamics can be
employed, given in the form of Eq. (1) as

𝐮 =
⎡⎢⎢⎣

𝜌
𝐦
𝐸

⎤⎥⎥⎦
and 𝐅(𝐮) =

⎡⎢⎢⎣

𝐦𝑇

𝐦⊗ 𝐯 + 𝑃 𝐈
(𝐸 + 𝑃 )𝐯𝑇

⎤⎥⎥⎦
, (3)

where 𝜌 is the density, 𝐦 ∈ ℝ𝑑 is the momentum vector, and 𝐸 is the total energy. Furthermore, 𝐈 denotes the identity
matrix in ℝ𝑑×𝑑 and 𝐯 = 𝐦∕𝜌 denotes the velocity. The pressure 𝑃 can be computed as

𝑃 = (𝛾 − 1)
(
𝐸 − 1

2
𝜌𝐯⋅𝐯

)
, (4)

where the specific heat ratio is taken as 𝛾 = 1.4 in this work.
The conservation law in Eq. (1) can also be represented in a quasi-linear formulation, given as

𝜕𝑡𝐮 + 𝐀⋅∇𝐮 = 𝟎, (5)
where 𝐀 ∈ ℝ𝑚×𝑚×𝑑 is the flux Jacobian tensor defined

𝐀 = 𝜕𝐅(𝐮)
𝜕𝐮

, (6)
and the product 𝐀 ⋅ ∇𝐮 ∈ ℝ𝑚 is defined (𝐀 ⋅ ∇𝐮)𝑖 =

∑
𝑗,𝑘 𝐴𝑖𝑗𝑘(𝜕𝑢𝑗∕𝜕𝑥𝑘). For the advection equation, this yields an

identical formulation as the conservative form due to the linearity of the flux, with the flux Jacobian simply reducing
to the velocity, i.e., 𝐀 = 𝐜. For the Euler equations, the flux Jacobian becomes much more complex as the flux is
nonlinear with respect to a vector-valued solution, and its derivation is left to Appendix A. However, this nonlinearity
can cause discrepancies between the conservative formulation and the quasi-linear form, particularly so in the vicinity
of discontinuities. Nevertheless, even in the nonlinear case, the structure of the flux Jacobian still possesses some
useful information about the underlying system as it gives an approximation of the characteristic propagation velocity
of the solution.

An important property of hyperbolic conservation laws is that this characteristic propagation velocity is finite, such
that the domain of influence of any point is locally supported in space and time. An upper bound for the extent of the
domain of influence  for some arbitrary point 𝐱0 over some time period [𝑡, 𝑡 + Δ𝜏] can readily be estimated as

(𝐱0,Δ𝜏) = 𝔹𝑑(𝐱0,Δ𝜏𝜆max), (7)
where 𝔹𝑑(𝐱′, 𝑟) is a 𝑑-ball centered at 𝐱′ with radius 𝑟 and 𝜆max is an estimate of the maximum wavespeed of the
system. This domain of influence effectively ensures that the solution at 𝐱0 cannot be affected by the solution at any
point farther than 𝑟 = Δ𝜏𝜆max away, which can greatly reduce the level of information necessary to adequately predict
the local evolution of the system over a sufficiently small time interval.
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2.2. Finite element methods
To numerically approximate hyperbolic conservation laws of the form of Eq. (1), we utilize finite element meth-

ods to discretize the governing equations, particularly the nodal discontinuous Galerkin (DG) method [32]. In this
approach, the domain Ω is partitioned into 𝑁 elements Ω𝑘 such that Ω =

⋃
𝑁 Ω𝑘 and Ω𝑖 ∩ Ω𝑗 = ∅ for 𝑖 ≠ 𝑗. Within

each element Ω𝑘, the discrete solution 𝐮ℎ(𝐱) is approximated via a set of 𝑛𝑠 nodal interpolating polynomials as

𝐮ℎ(𝐱) =
𝑛𝑠∑
𝑖=1

𝐮𝑖𝜙𝑖(𝐱) ⊂ 𝑉ℎ, (8)

where 𝐱𝑖 is a set of solution nodes, 𝜙𝑖(𝐱) are their associated nodal basis functions which possess the property 𝜙𝑖(𝐱𝑗) =
𝛿𝑖𝑗 , and 𝑉ℎ is the piece-wise polynomial space spanned by the nodal basis functions. We use the short-hand notation
𝐮𝑖 = 𝐮ℎ(𝐱𝑖) for brevity and denote the order of the approximation as ℙ𝑝, where 𝑝 is the maximal order of 𝐮ℎ(𝐱).The problem is solved through the weak formulation by applying the DG approximation and integrating Eq. (1)
with respect to a test function 𝐰ℎ(𝐱), which resides in the same finite element space as 𝐮ℎ(𝐱), yielding

𝑁∑
𝑘=1

{
∫Ω𝑘

𝜕𝑡𝐮ℎ⋅𝐰ℎ d𝑉 + ∫𝜕Ω𝑘

�̂�(𝐮−ℎ ,𝐮
+
ℎ ,𝐧)⋅𝐰ℎ d𝑆 − ∫Ω𝑘

𝐅(𝐮ℎ)⋅∇𝐰ℎ d𝑉

}
= 0. (9)

As the approximate solution is discontinuous across element boundaries, the flux function must be replaced by a
numerical flux �̂�(𝐮−ℎ ,𝐮+ℎ ,𝐧) which is dependent on the solution within the element of interest, denoted by the 𝐮−ℎ , and its
face-adjacent neighbor, denoted by 𝐮+ℎ , along with the outward facing normal vector 𝐧. For the hyperbolic conservation
laws considered in this work, the Rusanov approximate Riemann solver [33] is used, such that the numerical flux can
be calculated as

�̂�(𝐮−ℎ ,𝐮
+
ℎ ,𝐧) =

1
2
(
𝐅(𝐮−ℎ )⋅𝐧 + 𝐅(𝐮+ℎ )⋅𝐧

)
− 1

2
𝜆max

(
𝐮+ℎ − 𝐮−ℎ

)
. (10)

For the advection equation, the maximum wavespeed is simply taken as 𝜆max = |𝐜⋅𝐧|, which reduces to the upwind
flux, whereas for the Euler equations, the Davis wavespeed estimate [34] is used.
2.3. Adaptive mesh refinement

While AMR techniques for various classes of governing equations and numerical methods differ in their specific
implementations, they typically fall within the widely-used paradigm of the SOLVE→ESTIMATE→MARK→REFINE loop.
A complete pass through of the above sequence for time-dependent PDEs consists of solving the governing equations
over some time interval, estimating some error indicator functional (or functionals) for each element in the mesh,
marking which elements are to be refined and de-refined, and applying the resulting refinement actions onto the mesh.
A more in-depth overview of the steps in the AMR sequence is presented below.

SOLVE. In this step, the semi-discrete form of the governing time-dependent PDE is evolved using an appropriate
temporal integration method, the specific choice of which is typically dependent on the characteristics of the physical
system being solved. For each SOLVE step in the loop, the simulation is advanced over the time interval [𝑡, 𝑡+𝑇 ], where
𝑇 is referred to as the remesh time as this is the time period over which the mesh is fixed. We remark here that 𝑇 is not
the temporal integration time step Δ𝑡, the latter of which is dependent on the numerical solver and is largely irrelevant
in the AMR procedure. In most applications, the remesh time interval is many times larger than the simulation time
step as frequent remeshing (i.e., low 𝑇 ) incurs a large computational cost overhead.

ESTIMATE. Once the simulation has been advanced to the next remesh time, the ESTIMATE step consists of com-
puting a local error indicator for each element in the mesh. The indicator functional maps the solution to a set of
element-wise indicator values 𝑒𝑖, i.e.,

𝐮ℎ(𝐱) ↦ 𝑒𝑖 for all 𝑖 ∈ {1,… , 𝑁}. (11)
The indicator is assumed to be deterministic, such that an identical input state would result in an identical indicator
distribution throughout the domain. Furthermore, the ESTIMATE step may result in multiple indicators for each element.

MARK. Given the distribution of the error indicator (or indicators) for the elements in the mesh, the MARK step maps
this distribution to a set of refinement decisions for the elements through a policy 𝜋(𝑒𝑖) → {0, 1} ∀ 𝑖 ∈ {1,… , 𝑁},
where the resulting decisions 0 and 1 correspond to de-refinement and refinement actions, respectively. We remark
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here that the output of this policy may not necessarily be binary as multiple refinement methods may be allowed, a
notion that will be further explained in the subsequent step of the refinement loop, and that an element’s refinement
decision may depend on other elements’ decisions. This step of the refinement process is largely reliant on heuristics,
with a wide variety of approaches, including absolute threshold-based methods, i.e.,

𝜋(𝑒𝑖) =

{
1, if 𝑒𝑖 > 𝜃,
0, else,

(12)

where 𝜃 here is some arbitrary global error threshold, and relative threshold-based methods, i.e.,

𝜋(𝑒𝑖) =

{
1, if 𝑒max−𝑒𝑖

𝑒max−𝑒min
> 𝜃,

0, else,
(13)

where 𝜃 ∈ [0, 1] here is some arbitrary relative error threshold and 𝑒max and 𝑒min are the global maximum and minimum
error indicator values, respectively.

REFINE. With the output of the MARK step, the appropriate refinement and de-refinement actions can be then be
applied to the mesh. There exist a variety of mesh refinement methods for AMR, with the most ubiquitous approach
being ℎ-refinement. For this method, show on the left-hand side of Fig. 1, refining an element of choice subdivides
it into a set of sub-elements, typically referred to as the child elements, whereas de-refining a group of sub-elements
coalesces them into a singular element, typically referred to as the parent element. The number of successive refine-
ment actions performed between a child element and its native parent element is referred to as the refinement depth.
The use of ℎ-refinement typically results in a non-conforming mesh for which the numerical method of choice must
appropriately handle (e.g., the use of constrained degrees of freedom in FEM).

(a) ℎ-refinement

ℙ𝟑 ℙ𝟐

(b) 𝑝-refinement
Figure 1: Schematic of one-level ℎ-refinement (left) and 𝑝-refinement on a two-dimensional quadrilateral discontinuous
Galerkin finite element mesh with equal number of quadrature nodes and basis functions. Blue circles represent volume
quadrature nodes, red crosses represent surface quadrature nodes.

Due to the element-local polynomial approximation used in finite element methods, another, albeit not as common,
AMR approach can be achieved with 𝑝-refinement, shown on the right-hand side of Fig. 1. For this method, the order
of the polynomial basis within an element is increased or decreased appropriately in accordance with the output of
the marking policy, such that effective order of accuracy and number of degrees of freedom within elements can vary.
Similarly to ℎ-refinement, this adaptation technique results in a degree of non-conformity, although in the basis instead
of in the mesh.

Additional refinement methods exist separately from ℎ-refinement and 𝑝-refinement, although they are not con-
sidered in this work. For FEM, the joint use of ℎ- and 𝑝-refinement, dubbed ℎ𝑝-refinement, may be yield superior
performance for certain applications as it is typically assumed that ℎ-refinement is better suited for regions with dis-
continuous features whereas 𝑝-refinement is better suited for regions with smooth features. Furthermore, mesh de-
formation, dubbed 𝑟-refinement, may be used in applications where dynamically varying features and geometries are
encountered.
2.4. Reinforcement learning

Reinforcement learning enables an agent or a team of agents to solve sequential decision-making problems in
an unknown environment by interacting with the environment and receiving rewards over many episodes [35]. In a
T. Dzanic et al.: Preprint submitted to Elsevier Page 5 of 42
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single-agent scenario, the environment is formalized as a stationary Markov decision process (MDP) [36], a discrete-
time stochastic process { ,, 𝑃 , 𝑅, 𝛾} with the following components:

• A state space  .
• An action space .
• A transition function 𝑃 ∶  ×× → [0, 1] that defines the distribution 𝑃 (𝑠𝜏+1|𝑠𝜏 , 𝑎𝜏 ) of next states 𝑠𝜏+1 ∈ 

given an action 𝑎𝜏 ∈  taken by the agent at state 𝑠𝜏 ∈  , and an initial state distribution 𝑃0 ∶  → [0, 1], from
which the initial state of each episode is sampled.

• A reward function 𝑅∶  ×  → ℝ which includes a temporal discount factor 𝛾 ∈ (0, 1) that determines the
value of future rewards.

We use 𝜏 = 0, 1,… to denote the discrete time index. An agent’s goal is to find a policy 𝜋 ∶  × → [0, 1], which
determines the probability distribution of actions 𝜋(𝑎𝜏 |𝑠𝜏 ) to take at each state, to maximize the expected cumulative
discounted reward 𝐽 (𝜋) ∶= 𝔼[

∑∞
𝜏=0 𝛾

𝜏𝑅(𝑠𝜏 , 𝑎𝜏 )], where the expectation is taken over the environment transition and
policy. In practice, the transition function contains a termination criterion, formalized by an absorbing state with zero
reward, that triggers a reset of the environment for a new episode, so that each episode has a finite time horizon.

An alternative RL approach is the multi-agent viewpoint, which is the method of choice in this work. The envi-
ronment is formalized as a decentralized partially observable Markov decision process (Dec-POMDP) [37], denoted
by { ,,, 𝑃 , 𝑅,𝑂, 𝛾}, which extends an MDP in the following ways: 1) multiple agents, indexed by 𝑖 = 1,… , 𝑁 ,
interact with the shared environment; 2) each agent 𝑖 has a limited partial observation 𝑜𝑖𝜏 = 𝑂(𝑠𝜏 ) ∈ , produced by
an observation function 𝑂 from the true state; 3) actions are decentralized, meaning that each agent 𝑖 acts according to
its own policy 𝜋𝑖(𝑎𝑖𝜏 |𝑜𝑖𝜏 ); and 4) the environment transition 𝑃 (𝑠𝜏+1|𝑠𝜏 , 𝑎1𝜏 ,… , 𝑎𝑁𝜏 ) depends on the actions of all agents.
For the purposes of this work, the Dec-POMDP definition is specialized in the following two ways. First, agents are
homogeneous, meaning that they have the same observation and action spaces. Second, all agents share the same
definition of reward function 𝑅, but each agent receives its own individual reward value 𝑅(𝑠, 𝑎𝑖, 𝑖) which depends on
its own action and situation within the state. Each agent 𝑖 learns a policy 𝜋𝑖(𝑎𝑖|𝑜𝑖) to maximize the objective

𝐽 (𝜋𝑖) ∶= 𝔼𝑠0∼𝑃0,𝐚𝜏∼𝝅(⋅|𝑠𝜏 ),𝑠𝜏+1∼𝑃 (⋅|𝑠𝜏 ,𝐚𝜏 )

[ ∞∑
𝜏=0

𝛾𝜏𝑅(𝑠𝜏 , 𝑎𝑖𝜏 , 𝑖)

]
, (14)

where 𝐚 = (𝑎1,… , 𝑎𝑁 ) denotes the collection of all agents’ actions and 𝝅(𝐚|𝑠) =
∏𝑁

𝑖=1 𝜋(𝑎
𝑖|𝑜𝑖) denotes the joint

policy.

3. Methodology
Given the drawbacks of standard AMR techniques for the approximation of complex hyperbolic conservation laws,

the objective of this work is to explore a reinforcement learning approach for anticipatory mesh refinement strategies.
As reinforcement learning is quite general, a wide variety of approaches are feasible for integrating AMR within the
RL framework. As such, to have a robust and reliable policy for AMR, certain desirable attributes and features would
ideally be satisfied:

1. The policy should be able to generalize to arbitrary hyperbolic conservation laws without requiring substantial
domain specific knowledge, including complex nonlinear systems of equations which do not possess closed-form
expressions for the error (i.e., analytic solutions).

2. The user should be able to control the relative degree of refinement (i.e., error and cost targets) of the policy at
evaluation time.

3. The resulting policy should be insensitive to or, ideally, completely invariant to mesh/problem scale, choice of
error estimator, mesh resolution, simulation time, and remeshing time interval.

With these characteristics in mind, we present the proposed DynAMO approach, a Dynamic Anticipatory Mesh Op-
timization method for hyperbolic conservation laws using multi-agent reinforcement learning. The goal of DynAMO
is to learn more optimal long-term refinement strategies which consider the underlying physics of the problem, al-
lowing for more efficient refinement decisions which account for the spatio-temporal evolution of the solution, longer
T. Dzanic et al.: Preprint submitted to Elsevier Page 6 of 42
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remeshing time intervals, and the preemptive refinement of mesh regions prior to the introduction of discretization
error. Therefore, novel formulations for the observation and reward functions are introduced to best achieve these
target goals and features. We remark here that the primary purpose of this work is to evaluate the ability of RL and the
proposed observation and reward formulations as methods of achieving more efficient anticipatory mesh refinement
policies for complex nonlinear systems of equations. As such, the focus of this work will be on discovering policies
for one-level ℎ- and 𝑝-refinement in finite element methods on structured (but non-conforming), two-dimensional,
periodic meshes. While the extension to unstructured meshes and curved mesh elements, boundary conditions and
complex geometries, and multi-level refinement poses a necessary task for the proposed approach, these difficulties
are orthogonal to the study in this work and have been addressed by the formulations presented by the authors in Yang
et al. [29] and by Foucart et al. [31] and Freymuth et al. [30] in the context of simpler linear problems. Furthermore,
extensions to alternate refinement actions (such as conforming splitting in unstructured meshes) and mesh movement
in 𝑟-refinement may be achieved through increasing the size of the action space or changing the action space to a
continuous output, respectively.
3.1. Dynamic mesh optimization as a Dec-POMDP

DynAMO is instantiated as a Dec-POMDP model of dynamic mesh optimization with the following components:
1) a set of agents corresponding to each element in the mesh; 2) an observation space for each agent consisting of a
local spatial window centered on the agent’s element that observes derived quantities of the solution in the surrounding
elements at the given time; 3) an action space corresponding to refinement and de-refinement operations; 4) a transition
function which applies these actions and advances the PDE until the next remesh time; and 5) a reward function which
encodes the efficacy of the refinement/de-refinment actions on the local error.
3.1.1. Agent

We consider a multi-agent reinforcement learning approach to AMR, where each element Ω𝑖 is represented by an
agent, denoted by an identifier 𝑖 ∈ {1,… , 𝑁}. Crucially, this viewpoint enables each individual element to make
its own refinement or coarsening decision based on its own local observation and independently from other agents.
Furthermore, all agents are allowed to act simultaneously at each discrete remeshing step in contrast to single-agent
approaches [28, 31], which is critical for maintaining exactly the same mode of execution between training and deploy-
ment. For 𝑝-refinement, 𝑁 is constant throughout the simulation, such that the number of agents remains constant.
However, for ℎ-refinement, the number of elements varies according to mesh refinement and de-refinement. To avoid
the problem of agent creation and deletion, posthumous credit assignment in multi-agent reinforcement learning, and
agent co-operation (for coarsening actions in ℎ-refinement), we instead take an alternate approach where the agents
are assigned to the initial coarse elements, and any additional elements stemming from subsequent refinement actions
on these initial coarse elements also remain under the scope of the original agent. This allows for a constant number of
agents throughout the simulation even in the ℎ-refinement case, avoiding the difficulties of agent creation and deletion.
Note that while the number of agents is the same during a single episode, it does not have to be the same in different
episodes, such that different mesh resolution may be used for training and evaluation.
3.1.2. Observation space

The choice of the agent observation plays arguably the most important role in the design of an anticipatory mesh
refinement approach. For time-dependent PDEs such as hyperbolic conservation laws, the observation must have two
components: an effective and robust approach for approximating the error distribution within the domain and a general
method for predicting the spatio-temporal evolution of the solution and, by extension, the error. These components,
which will be described momentarily, form the quantities that are observed by each individual agent.

Given the local domain of influence of hyperbolic conservation laws, it is natural to assume that a local observation
window is sufficient to adequately predict the evolution of the underlying physics. As such, we utilize a formulation
where each agent 𝑖 has an individual observation 𝑜𝑖𝑗 ∈ ℝ𝑘𝑥×𝑘𝑦×𝑛 which consists of a 𝑘𝑥 × 𝑘𝑦 spatial window with
one channel for each of the 𝑛 observable quantities. The spatial window is centered on the element of agent 𝑖 and
contains the values of 𝑘𝑥 = 2𝑛𝑥 + 1 and 𝑘𝑦 = 2𝑛𝑦 + 1 elements, where 𝑛𝑥 and 𝑛𝑦 specify the number of neighbor
elements along each direction, such that 1 ≤ 𝑗 ≤ 𝑘𝑥𝑘𝑦. An example schematic for this approach is shown in Fig. 2.
For ℎ-refinement, these numbers correspond to the initial coarse elements (i.e., agents). This spatial extent is fixed at
training time, which constrains the extent of the local domain of influence. As will be later presented, this gives an
effective bound maximum remesh time 𝑇 for the approach.
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Agent
Observation Window

𝐱𝑐𝑖

𝐱𝑐𝑗

𝐫𝑖𝑗

Figure 2: Schematic for an example ℎ-refinement observation setup with an initial mesh of 𝑁 = 82 agents/elements,
showing the mesh and example displacement vector (left), the observation window of an agent on a refined mesh (center),
and the observation channels of an agent with 5 observable quantities (right).

The first observable quantity is an error indicator metric for each element in the observation window. For brevity,
we present the observation for an arbitrary agent 𝑖 with an arbitrary neighbor index 𝑗, where 𝑗 corresponds to any one of
the 𝑘𝑥𝑘𝑦 agent/element indices which reside in the spatial window of the observation 𝑜𝑖. As most governing equations
do not possess an analytic solution, it is unreasonable to expect that an analytic expression exists for the error in practical
applications. As such, we utilize an error estimator to approximate the distribution of error within the domain. While
the details of the particular error estimators used in this work are left to Section 4, we assume that the error estimator
returns a set of quantities 𝑒𝑖𝜏 ∀ 𝑖 ∈ {1,… , 𝑁}, where 𝑒𝑖𝜏 represents an element-wise constant approximation of the error
in element Ω𝑖 at some time index 𝜏. However, observing the raw output of an error estimator poses some drawbacks
as this quantity is not scale-invariant and, in a sense, not invariant to the mesh resolution. Instead, we observe a
normalized error estimate as

𝑜𝑖𝑗𝜏,0 ∶= −
log10(𝑒

𝑗
𝜏 )

log10(𝑒𝜏,max)
, (15)

where a scaled maximum error is defined as
𝑒𝜏,max ∶= 𝛼|𝐞𝜏 |∞. (16)

This normalized error observation includes a user-defined parameter 𝛼, which can be considered as a form of a relative
error threshold that will be used in the reward function to indicate which elements are to be refined or coarsened. A
key feature of the proposed approach here is that 𝛼 can be varied at evaluation time, such that the normalized error
distribution in the observation can be adjusted by the user. It will be later shown that this allows for the user to control
the relative degree of refinement at evaluation time, one of the previously presented critical features of an effective
AMR policy. We note here that, in theory, one may observe multiple error components for systems of conservation
laws, but we only consider one component in this work which will be discussed in Section 4.

While the normalized error observation is critical to the AMR policy, it does not contain any of the required
information to predict its spatio-temporal evolution. Therefore, it is necessary to include some information about the
local state in the observation. In Yang et al. [28], the policy observed the high-order FEM solution on an equispaced
grid and the physics of the problem were ostensibly learned through the RL approach. However, this method has some
notable disadvantages, with the main drawback being that the RL policy has to learn the physics of the underlying
PDE essentially from scratch. Furthermore, this approach is not invariant to mesh/problem scale or remesh time. We
instead propose an alternate approach which relies on feature engineering based on some useful properties of hyperbolic
systems to form a non-dimensional observable quantity which possesses significantly better generalization properties.

We introduce this approach in the form of an example for the linear advection equation, where the advection velocity
is given by a constant vector 𝐜. We define a displacement vector 𝐫𝑖𝑗 as

𝐫𝑖𝑗 = 𝐱𝑐𝑖 − 𝐱𝑐𝑗 , (17)
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where 𝐱𝑐𝑖 is the centroid of the element Ω𝑖. The propagation velocity along this displacement vector can be simply
computed as 𝐜 ⋅ 𝐫𝑖𝑗∕‖𝐫𝑖𝑗‖2. If this quantity is again normalized by ‖𝐫𝑖𝑗‖2, one yields an estimate for the (inverse) time
required for a feature to propagate from 𝐱𝑐𝑗 to 𝐱𝑐𝑖 . By then introducing the remesh time 𝑇 as

𝐜 ⋅ 𝐫𝑖𝑗
‖𝐫𝑖𝑗‖22

𝑇 ,

we recover a non-dimensional quantity which estimates the likelihood, although not in a probability sense, that element
Ω𝑖 will encounter a feature presently in Ω𝑗 in the span of the remesh time 𝑇 , i.e., in the range [𝑡𝜏 , 𝑡𝜏 + 𝑇 ]. This novel
observation formulation possesses some very useful properties, namely that it is invariant to problem/mesh scale and
remesh time and that the quantity is effectively re-normalized around a critical value of unity.

With this example in mind, we introduce a general form of this novel observable quantity for arbitrary hyperbolic
conservation laws. Given 𝑚 solution variables in the PDE, the next 𝑚 observable quantities are defined as

𝑜𝑖𝑗𝜏,𝑘 =
⟨
𝐀𝑘𝑙

𝐮𝑘
𝐮𝑙

⟩

𝑗
⋅

𝐫𝑖𝑗
‖𝐫𝑖𝑗‖22

𝑇 ∀ 𝑘 ∈ {1,… , 𝑚}, (18)

where 𝐀𝑘𝑙 is the 𝑘-th component of the flux Jacobian, defined in Section 2, with respect to the chosen solution variable
index 𝑙 at time 𝑡𝜏 . The notation ⟨⋅⟩𝑗 denotes the average of the quantity ⋅ across the element Ω𝑗 . Similarly to the error
observation, one may observe multiple components, but we only consider one component in this work which coincides
with the solution component used for the error observation. Furthermore, this component is assumed to be non-zero,
such that the quantity in Eq. (18) is always well-defined (e.g., density and total energy in the Euler equations). It must
be noted that for nonlinear conservation laws, this non-dimensional likelihood quantity is no longer exact (i.e., a value
of unity does not necessarily mean that a feature will propagate across the given distance), but it instead approximates
a linearization of the exact quantity around (𝐱, 𝑡) = (𝐱𝑐𝑖 , 𝑡𝜏 ).Finally, while this non-dimensional likelihood quantity gives an essential representation of the spatio-temporal
evolution of the error, the linearized formulation may not present enough information to adequately predict strongly
nonlinear interactions (e.g., shocks in the Euler equations). For such problems for the Euler equations that do ex-
hibit strong discontinuities, we also append the element-wise averaged conserved ([𝜌,𝐦, 𝐸]) and primitive variables
([𝜌, 𝐯, 𝑃 ]) to the observation as this was found to yield moderately better results.
Remark (Aggregation for ℎ-refinement). For ℎ-refinement, as the agents are defined on the coarse elements, it is
necessary to aggregate the observables from any child elements up to the coarse parent level (i.e., the agent level).
For the error field, this is performed as an 𝐿2 norm across the child elements, whereas for the other derived quantities
such as the flux Jacobian and solution, a simple area-weighted average was performed. Any error normalization and
element-wise averaging was performed prior to the aggregation.

3.1.3. Action space
Each agent 𝑖 then chooses its individual action 𝑎𝑖 from the same discrete action space . In the proposed approach,

we utilize an absolute action space for refinement/de-refinement, where the action corresponds to an output state of
the mesh independently of the input mesh. As such, for the one-level refinement considered in this work, the action
space is simply taken as a binary output,

 ∶= {0, 1} = {coarse, fine}, (19)
which dictates the refinement level for the chosen agent. For the coarse action, the agent will set that given element’s
refinement level to the coarse state. Likewise for the fine action, the agent will set that given element’s refinement level
to the fine state. For 𝑝-refinement, these actions simply correspond to setting the approximation order for the element,
where for some base approximation order 𝑝, the coarse action sets the element to a ℙ𝑝 approximation and the fine
action elevates it to a ℙ𝑝+1 approximation. If the current state of the agent is such that the element approximation is
of order 𝑝 + 1 and the coarse action is chosen, the polynomial reduction is performed with an 𝐿2 projection. For
ℎ-refinement, since the agents are defined over the coarse mesh, the coarse action sets the refinement level of that
element to the base level while the fine action sets the refinement level to one higher than the base level, subdividing
the initial coarse element into four congruent child elements. Similarly as with 𝑝-refinement, the reduction from the
fine child elements to the coarse parent element is performed using an 𝐿2 projection. An example of these refinement
actions for both ℎ- and 𝑝-refinement is shown in Fig. 1.
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3.1.4. Transition function
The initial state of each episode is defined by the initial coarse mesh and the initial conditions that are sampled

from a class of parameterized functions, which are defined in Section 5. Given the agents’ actions 𝐚𝜏 , the environment
transitions from current state 𝑠𝜏 to next state 𝑠𝜏+1 according to the conditional distribution 𝑃 (𝑠𝜏+1|𝑠𝜏 , 𝐚𝜏 ) via the
following steps:

1. Apply refinement to each element whose agent’s action is refine and current refinement level is coarse and
de-refinement to each element whose agent’s action is coarse and current refinement level is fine.

2. Advance the PDE in simulation time from 𝑡𝜏 to 𝑡𝜏+1 = 𝑡𝜏 + 𝑇 .
3. If final time is reached (𝑡 = 𝑡𝑓 ), reset the environment.

The transition is deterministic for the PDEs in this work, but the overall methodology applies equally to stochastic
transitions in the case of stochastic PDEs.
3.1.5. Reward

After an environment transitions with actions 𝐚𝜏 , each agent 𝑖 receives an individual reward 𝑟𝑖𝜏+1 ∈ ℝ. Similarly to
the observation, the reward function must be carefully crafted to allow for generalizability between different problems,
meshes, and target error/cost. We utilize a formulation in which the agents are penalized for doing the “wrong” actions,
such that the optimal reward obtainable by the policy is zero. In brief, we penalize the agents if they choose the coarse
action when refinement is more desirable (i.e., when errors are high) and vice versa. The reward function is explicitly
defined as

𝑟𝑖𝜏+1(𝑠𝜏 , 𝐚𝜏 ) =
⎧⎪⎨⎪⎩

−𝑝ur
|||log10

(
𝑒𝑖𝜏+1∕𝑒𝜏,max

)|||, if 𝑒𝑖𝜏+1 > 𝑒𝜏,max and 𝑎𝑖𝜏 = coarse,
−𝑝or

|||log10(𝑒𝑖𝜏+1∕𝑒𝜏,min)
|||, if 𝑒𝑖𝜏+1 < 𝑒𝜏,min and 𝑎𝑖𝜏 = fine,

0, else,
(20)

where 𝑝𝑢𝑟 and 𝑝𝑜𝑟 are strictly positive hyperparameters representing the penalty factors for under-refinement and over-
refinement, respectively, and 𝑒𝜏,max and 𝑒𝜏,min are maximum and minimum error thresholds, respectively, computed at
time 𝑡𝜏 . The use of threshold values at 𝑡𝜏 rather than at 𝑡𝜏+1 ensures that the reward depends only on the normalization
applied to the observations that the policy used to produce action 𝑎𝑖𝜏 . Crucially, this reward formulation is time-
independent and does not depend on any global spatial information, which means policies trained with this reward
can in principle generalize to any simulation duration and mesh size (retaining the same observation normalization) at
evaluation time.

For the thresholds in Eq. (20), the maximum error threshold 𝑒𝜏,max is computed identically to Eq. (16) while the
minimum error threshold is computed as

𝑒𝜏,min = 𝑒𝛽𝜏,max, (21)
where 𝛽 > 1 is a hyperparameter representing the error threshold hysteresis. We remark that this formulation is under
the assumption that 𝑒𝜏,max < 1, such that 𝑒𝜏,min < 𝑒𝜏,max, which is typically fair to assume if the problem setup is
appropriately normalized. These hyperparameters are chosen purely for the purpose of training the policy and, unlike
the user-defined parameter 𝛼 in the observation, cannot affect the policy at evaluation time. In this work, the parameter
𝛽 is fixed.

An example of how this error normalization and reward functional operate is shown in Fig. 3. Given a raw error
distribution, the error is re-normalized around a unit value per Eq. (16) based on the threshold parameter 𝛼, much
like in the observation. From the reward functional, the policy is penalized for applying any de-refinement actions on
elements with normalized errors above this critical value, shown by the red region in the figure. Furthermore, the policy
is also penalized for applying refinement actions to elements with normalized error values below the minimum error
threshold computed by Eq. (21), shown by the blue region in the figure. Therefore, the policy is effectively incentivized
to maintain the element error distributions within the middle (white) region. The key feature of the observation and
reward functional is that the raw error represented by the white region is controlled by the threshold parameter 𝛼. As a
result, by varying the parameter 𝛼, the user can control the raw target error at evaluation time even though the reward
is not used then since the policy is optimized with respect to a normalized error in the observation which itself can be
varied at evaluation time.
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(b) Normalized error distribution
Figure 3: Schematic for an example raw error distribution (left) transformed to a normalized error distribution (right)
as a function of the hyperparameters 𝛼 and 𝛽. Red region denotes normalized error values for which the policy penalizes
de-refinement, blue region denotes normalized error values for which the policy penalizes refinement.

Note that the reward is computed with respect to a modified error estimate 𝑒𝑖𝜏+1 instead of the instantaneous error
estimate 𝑒𝑖𝜏+1. We claim that the instantaneous error at time 𝑡𝜏+1 is not necessarily a good indicator of the appro-
priateness of the action at time 𝑡𝜏 , nor is any combination of the instantaneous error estimates 𝑒𝑖𝜏 and 𝑒𝑖𝜏+1. A simple
demonstration of the failure mode introduced by using the instantaneous error in the reward can be exemplified through
the advection of some compactly-supported characteristic feature of interest, where the feature itself on the order of the
element scale. Over the remesh time 𝑇 , this feature may move through multiple elements (recall that longer remesh
times are a desirable feature of the AMR policy), such that it is possible that elements which have encountered the
feature in that time interval will still have near-zero error estimates since the feature is no longer currently in that el-
ement. As such, a reward based on the instantaneous error may penalize agents which correctly refine elements that
experience complex features in the time interval [𝑡𝜏 , 𝑡𝜏+1]. To mitigate this failure mode, we utilize a modified error
estimate 𝑒𝑖𝜏+1 in the reward, where the modified error estimate is computed as

𝑒𝑖𝜏+1 = max
𝑡∈[𝑡𝜏 ,𝑡𝜏+1]

𝑒𝑖(𝑡), (22)

i.e., the maximum error estimate for the element across the time range [𝑡𝜏 , 𝑡𝜏+1]. This maxima is computed discretely
across the discrete time steps of the temporal integration method, which are sufficiently small such that 𝑇 >> Δ𝑡.
Much like with the observation, the modified error field for the ℎ-refinement case is aggregated to the coarsest (agent)
level.

An algorithmic overview of the DynAMO approach which combines these individual components is shown in
Algorithm 3.1.
Algorithm 3.1 AMR environment step subroutine in DynAMO.
Input: 𝐚𝜏 : actions of all agents

1: Update mesh with actions 𝐚𝜏 .
2: Advance PDE in simulation time on new mesh from 𝑡𝜏 to 𝑡𝜏+1 = 𝑡𝜏 + 𝑇 , computing the maximum element-wise

error �̂� over the time interval.
3: Compute new element errors 𝐞𝜏+1.
4: Compute reward 𝐫𝜏+1 from 𝐞𝜏+1 and thresholds 𝑒𝜏,max, 𝑒𝜏,min using Eq. (16), Eq. (21), and Eq. (20).
5: Compute new error thresholds 𝑒𝜏+1,max and 𝑒𝜏+1,min from 𝐞𝜏 using Eq. (21) and Eq. (16).
6: Compute next observations 𝐨𝜏+1 from 𝐞𝜏+1 and new error thresholds using Eq. (15) and Eq. (18).

Output: 𝐫𝜏+1, 𝐨𝜏+1, done

T. Dzanic et al.: Preprint submitted to Elsevier Page 11 of 42



DynAMO: Multi-agent reinforcement learning for dynamic anticipatory mesh optimization

3.2. Independent Proximal Policy Optimization algorithm
We employ Independent PPO, a simple yet effective method for fully-decentralized multi-agent reinforcement

learning based on Proximal Policy Optimization (PPO) [38]. Each agent 𝑖 learns a policy 𝜋𝑖
𝜇(𝑎

𝑖|𝑜𝑖), parameterized by a
neural network with trainable weights 𝜇, to maximize the objective in Eq. (14). A value function 𝑉𝜙(𝑜𝑖𝜏 ), parameterized
by another neural network with trainable weights 𝜙, is used to estimate the long-term value of each observation to
update the policy at each training step. To improve efficiency, we employ parameter-sharing and experience-sharing
for all agents, which means individual policies 𝜋𝑖

𝜇,∀ 𝑖 ∈ {1,… , 𝑁} are represented by one and the same policy network
𝜋𝜇 that is trained using experiences from all agents. This enables faster learning and convergence than completely
independent learning using individual experiences [39]. Crucially, note that each agent still acts differently based on
its own local information, since each action sample 𝑎𝑖𝜏 ∼ 𝜋𝜇(⋅|𝑜𝑖𝜏 ) for agent 𝑖 is conditioned on its own individual
observation.

Although independent learning faces challenges such as the lack of centralized global information and environment
non-stationary from each agent’s perspective due to the changing policies of other agents, it has significant benefits in
the context of dynamic mesh adaptation. As previously mentioned, the spatial domain of dependency for each element
is bounded over the time interval 𝑇 , which means it is sufficient for each element’s refinement decision to be based on
an adequately large local window instead of the full global state. Furthermore, the use of individual rewards means
each agent receives unambiguous feedback on the optimality of its own action, which circumvents the multi-agent
credit assignment problem that arises in the case of a team reward [40]. A pseudo-code overview of the DynAMO
training routine using Independent PPO is shown in Algorithm 3.2.
Algorithm 3.2 DynAMO training routine.

1: for each training iteration do
2: 𝐨0 ← env.reset() ⊳ Reset environment
3: for time step 𝜏 = 1,… , 𝑛𝑡 do
4: 𝐚𝜏 ← 𝝅(𝐚𝜏 |𝐨𝜏 ) ⊳ Get actions for all agents
5: 𝐫𝜏+1, 𝐨𝜏+1, done ← env.step(𝐚𝜏 ) ⊳ Algorithm 3.1
6: Store transition (𝐨𝜏 , 𝐚𝜏 , 𝐫𝜏+1, done) into trajectory buffer 
7: if done = True then
8: 𝐨𝜏+1 ← env.reset() ⊳ Reset environment
9: end if

10: end for
11: Train on minibatches of transitions from  by PPO
12: end for

4. Implementation
With the DynAMO approach set forth, we present here an in-depth overview of the implementation details of the

approach, including numerical frameworks and experimental setups. A schematic of the proposed approach is shown
in Fig. 4.
4.1. Numerical solver

The numerical solver component of the proposed approach was implemented using the modular open-source C++
FEM library MFEM [41] and its Python interface PyMFEM [42]. The FEM approach of choice was a nodal DG [32]
approximation with Gauss–Lobatto solution nodes and the Rusanov approximate Riemann solver [33]. The Rusanov
approach was chosen primarily due to its robustness, although better results may be obtained using less dissipative
Riemann solvers. Temporal integration was performed using an explicit fourth-order, four-stage Runge–Kutta scheme
with a time step based on the Courant–Friedrichs–Lewy (CFL) condition. The CFL number was generally set to
CFL = 0.5 using the standard RKDG estimate of Cockburn and Shu [43]. The base approximation order was set
to ℙ2 except for problems in the Euler equations which exhibit discontinuities where a ℙ1 approximation with the
Barth–Jespersen limiter [44] was used, with the limiting performed with respect to the density field.

For a given analytic initial condition, the solution was initialized by interpolating the initial conditions to the
solution nodes. To compute the estimated error for the observation and reward, we utilized a separate error estimator
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Figure 4: Schematic of the DynAMO approach.

for ℎ- and 𝑝-refinement. We remark here that these estimators may not satisfy the efficiency and the reliability condition
of traditional a posteriori error estimators [45], but they were found to be sufficient to yield highly-performant policies.
These estimators primarily target discretization error, although more sophisticated estimators, such as ones based on
the solution residual, may achieve more accurate results for hyperbolic conservation laws. However, the particular
choice of error estimator is separate from the main aim of this work, and a fair comparison can only be made against
baseline approaches using the same error estimators. For 𝑝-refinement, the error was estimated through a measure of
the difference between the polynomial approximation and itself projected to polynomial space of one degree lower,
i.e.,

𝑒𝑖 = ‖𝐮𝑖ℎ − Π𝑝−1𝐮𝑖ℎ‖𝐿2(Ω𝑖),

where Π𝑝−1 is an 𝐿2 projection operator onto the polynomial space of degree 𝑝− 1. Note that 𝑝 is the current order of
the element, which in the 𝑝-refinement case may not be the base order. For ℎ-refinement, the error was estimated by an
interface solution jump-based error estimator using a bulk𝐿2-projection similar to the Zienkiewicz–Zhu error estimator
[46, 47]. For an arbitrary element Ω𝑖, let 𝑒 = {Ω+,Ω−} be the neighboring elements of an interior edge 𝑒 and 𝑅 be
the smallest rectangle that contains 𝑒. We define a polynomial reconstruction operator 𝑒 ∶ ℙ𝑝+ (Ω+) ×ℙ𝑝− (Ω−) →
ℙ𝑟(𝑅), where 𝑟 = max{𝑝+, 𝑝−} and

𝑒(𝐮ℎ) ∶= argmin
𝐯∈ℙ𝑟(𝑅)

‖𝐯 − 𝐮ℎ‖𝐿2(𝑒).

Then, the error estimate 𝑒𝑖 is defined as

𝑒𝑖 =

(
1

𝑁𝑒,𝑖

∑
𝑒⊂𝜕Ω𝑖∖𝜕Ω

‖𝐮ℎ −𝑒(𝐮ℎ)‖2𝐿2(Ω𝑖)

)1∕2

,

where 𝑁𝑒,𝑖 is the number of interior edges contained in the boundary of Ω𝑖.While these error estimates were used for the observation and reward, the efficacy of the policies (and the com-
parison to baseline approaches) was evaluated with respect to the “true” error. For the advection equation, this was
simply the analytic solution, whereas for the Euler equations, the true error was approximated using a reference sim-
ulation with resolution equivalent to one refinement level higher than the maximum refinement level allowable (e.g.,
for 𝑝-refinement, the reference simulation was performed at ℙ𝑝+2).
4.2. Reinforcement learning framework

The reinforcement learning framework was implemented using RLLib [48]. The PPO approach was implemented
using the default hyperparameter values in RLLib except the following: a learning rate of 10−4, a rollout fragment
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length of 20, and a batch size of 1000 for each epoch of stochastic gradient descent with minibatches of size 50. The
network architecture was a fully-connected neural network with two hidden layers of 256 neurons using a hyperbolic
tangent activation function. Purely fully-connected layers were used instead of convolutional neural network (CNN)
layers (or a mixture thereof) to maintain the directional structure in the input and to allow for straightforward extension
to unstructured observations through approaches such as graph neural networks [29]. For each policy, training was
performed across up to 16 CPUs over the span of 24 hours, which covers approximately 104 − 105 training episodes.
The most performant policy (i.e., the policy with the highest batch-averaged mean reward) over the training period was
used for evaluation.

The DynAMO-specific hyperparameters were fixed across the various policies trained. The error threshold value
at training time was set to 𝛼train = 0.1 and the error threshold hysteresis was set to 𝛽 = 1.2. Furthermore, the under-
refinement and over-refinement penalty factors were set as 𝑝𝑢𝑟 = 10 and 𝑝𝑜𝑟 = 5, respectively. Unless otherwise
stated, the error threshold value 𝛼 at evaluation time was set to its training value. For the Euler equations, the solution
component for the observed quantities in Eq. (15) and Eq. (18) was the total energy, which was also the component
used for evaluating the error against the reference solution. The positivity of total energy in the Euler equations
ensures that the quantity in Eq. (18) remains well-defined. For the observation, the element neighborhood size was set
to 𝑛𝑥 = 𝑛𝑦 = 8, such that the size of the observation window was 𝑘𝑥 = 𝑘𝑦 = 17.

Domain of
dependency

𝑛𝑦
𝑛𝑥

𝑡𝜏+1

𝑡𝜏

Figure 5: The domain of dependency and observation window for an element over a remeshing time interval 𝑇 = 𝑡𝜏+1 − 𝑡𝜏 .

To ensure that domain of influence of a given element does not exceed the observable region of the policy, as
exemplified in Fig. 5, this observation window size effectively constrained the maximum remeshing time interval 𝑇
via a CFL-like condition as

𝑇 ≤ min
[
𝑛𝑥Δ𝑥
𝜆max

,
𝑛𝑦Δ𝑦
𝜆max

]
,

where Δ𝑥 and Δ𝑦 are the corresponding characteristic mesh spacings along the 𝑥 and 𝑦 directions, respectively. The
specific remesh time for the experiments was chosen close to this limit during training – note that this inequality does
not necessarily always have to be satisfied, but the performance of the approach would likely suffer in scenarios where
it is not. As such, since the policy relies on a fixed observation size (due to the architecture of the network), the
remesh time can be modified accordingly if needed to ensure that this condition is met at evaluation time. For the
purposes of training, we utilize a fixed episode length of 4 RL steps, corresponding to 4 remesh time intervals, such
that the final simulation time was set as 𝑡𝑓 = 4𝑇 . However, this episode length and simulation time was freely varied
during evaluation. We remark here that the proposed approach is primarily tailored towards solvers utilizing explicit
time stepping, where the observation window can encompass the domain of influence over many solver time steps.
Extensions to implicit time schemes, which allow for significantly larger time steps, can be readily performed with
the caveat that the observation window must be sufficiently large to account for time steps which themselves may be
larger than a standard remesh time interval used for explicit time schemes. Although the assumption of a local domain
of influence in hyperbolic conservation laws does not necessarily hold for an implicit time scheme, it may still offer a
suitable approximation for the local solution behavior.

As the purpose of the proposed approach is to increase the efficiency of AMR, it is important to understand the
computational overhead of the RL framework at evaluation time to ensure that its cost do not outweigh its benefits.
We remark that this work primarily pertains to evaluating the capabilities of RL for AMR, and due to the use of the
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RLLib framework on top of the FEM solver, the current implementation of the proposed approach is not necessarily
tailored towards peak computational efficiency. However, even in its current form, the computational cost overhead
of the RL framework was a fraction of the cost of the FEM solve (e.g., for the Euler equations on a 𝑁 = 642 mesh,
the cost of inference was less than 20% of the cost of the FEM solve). Furthermore, due to the use of an independent
multi-agent approach which allows for a highly-parallelizable implementation, the cost of the proposed method can
still be drastically decreased with parallelization, a more computationally efficient implementation of the network, and
the use of GPU-accelerated computing.

5. Results
The proposed DynAMO approach was evaluated on a series of numerical experiments showcasing applications to

linear and nonlinear hyperbolic conservation laws with ℎ- and 𝑝-refinement. While the linear advection equation may
not be a rigorous test for the approach, it possesses some useful features such as anisotropic solution and error evolution
and an analytic solution that allows for the calculation of an exact error. As such, it serves as a suitable preliminary
example to present certain features of DynAMO and an initial efficacy comparison to baseline methods. Afterward,
the approach is more rigorously evaluated on the compressible Euler equations for both smooth and discontinuous
problems, showcasing the viability of DynAMO for complex nonlinear systems. For each set of numerical experiments,
a separate policy is trained, such that the results of four policies are shown (one each for advection with 𝑝-refinement,
advection with ℎ-refinement, Euler with 𝑝-refinement, and Euler with ℎ-refinement). The goal is to train the policy on
smaller representative problems and show that this approach can effectively generalize to larger and unseen problems.

The results are presented for a series of problems, including in-distribution examples, where the problem condi-
tions are similar (but not necessarily exactly identical) to episodes encountered during training, and out-of-distribution
examples, where the approach is applied to unseen problems, including different initial conditions (which are not rep-
resentative of the initial conditions used during training), longer simulation time/episode lengths, longer remesh time
intervals, and different initial mesh resolutions. To compare the proposed approach to baseline methods, we consider
a normalized metric for the computational cost 𝑐 and error 𝑒, defined as

𝑐 =
𝑐 − 𝑐coarse

𝑐fine − 𝑐coarse
and 𝑒 =

𝑒 − 𝑒fine
𝑒coarse − 𝑒fine

, (23)

where the subscripts coarse and fine refer to the results of simulations performed on completely unrefined and com-
pletely refined meshes, respectively. The computational cost metric 𝑐 is computed as the cumulative total degrees of
freedom in the mesh summed between remesh steps. From these quantities, we define an efficiency metric 0 ≤ 𝜖 ≤ 1
as

𝜖 = 1 −
√
𝑐2 + 𝑒2, (24)

where a higher efficiency represents an AMR policy that can achieve a higher accuracy for a given computational
cost or, conversely, a given accuracy for a lower computational cost. This efficiency metric is the primary point of
comparison between DynAMO and baseline methods. For this comparison, we utilize the absolute threshold-based
method described in Section 2.3 as the baseline, which for the Euler equations was applied to the total energy error
estimate for consistency with the DynAMO approach.
5.1. Advection with 𝑝-refinement

The DynAMO approach was first applied to the task of 𝑝-refinement for the advection equation, which allows for an
evaluation of the approach for AMR on simple linear PDEs with a constant number of mesh elements. We consider the
advection of smooth features for which 𝑝-refinement is particularly well-suited for. For this task, the initial conditions
for the training episodes were sampled from a set of “ring”-like shapes, defined as

𝑢(𝑥, 𝑦, 0) = 1 + exp

(
−𝑤

(√
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 − 𝑟0

)2
)
, (25)

where the parameters 𝑥0, 𝑦0, 𝑟0, and 𝑤 were uniformly distributed across the ranges 𝑥0 ∈ [0.3, 0.7], 𝑦0 ∈ [0.3, 0.7],
𝑟0 ∈ [0.1, 0.3], and 𝑤 ∈ [50, 150]. This initial condition was chosen to give an extra degree of complexity to the error
distribution, adding a region of relatively low error surrounded by a region of high error. Furthermore, the domain was
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set to Ω = [0, 1]2, the remesh time was set as 𝑇 = 0.3 with a total number of 4 RL steps, the initial mesh resolution
was set as 𝑁 = 242, and the propagation velocity magnitude was sampled across the range ‖𝐜‖2 ∈ [0.7, 1], with
the direction of propagation uniformly distributed across the azimuthal direction. The efficacy of the agent over the
training period is shown through the training reward curve in Fig. 6.
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Figure 6: Batch-averaged (negative) reward with respect to number of environment steps during the training process for
𝑝-refinement on the advection equations.

(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 7: Solution contours overlaid with 𝑝-adapted mesh at varying remesh intervals using DynAMO for the in-distribution
advecting ring case. Highlighted elements represent 𝑝-refinement.
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5.1.1. Sample problem
To showcase the features of the DynAMO approach and present an initial comparison to baseline methods, we

first present results for a single in-distribution test case, where the parameters were set as 𝑥0 = 𝑦0 = 0.5, 𝑟0 = 0.1,
and ‖𝐜‖2 = 1 with a propagation angle of 𝜋∕4. The evolution of the solution and 𝑝-adapted mesh across 4 remesh
times as computed by the DynAMO approach and the threshold policy is shown in Fig. 7 and Fig. 8, respectively. The
error threshold for the DynAMO policy was set identical to the training value, i.e., 𝛼 = 𝛼train, while the error threshold
for the threshold policy was set to 𝜃 = 10−3 as this will later be shown to be the value at which this policy achieves
the highest efficiency. It can immediately be seen that at 𝑡 = 0, the threshold policy based on the instantaneous error
estimate results in an isotropic refinement pattern centered about the ring, which cannot account for the propagation
of the ring until the next remesh time. Consequently, the majority of the ring exits the refinement region by 𝑡 = 𝑇 ,
causing an increase in error. In contrast, the DynAMO policy shows a highly anisotropic refinement pattern, with
the refinement region stretched in the direction of the propagation velocity. As such, it is able to preemptively refine
the region through which the ring will propagate between the remesh intervals. In fact, the refinement decisions by
the DynAMO policy qualitatively seem to cover exactly the region necessary to account for the propagation distance
between the remesh intervals without excessively refining ahead of the ring. This behavior persisted throughout the
entire simulation time, with the DynAMO policy showing excellent preemptive refinement while the threshold policy
was unable to adequately account for the spatio-temporal evolution of the solution and subsequent error. As a result, the
DynAMO policy was able to use much longer remesh intervals without sacrificing accuracy in comparison to standard
AMR approaches based on instantaneous error estimates.

(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 8: Solution contours overlaid with 𝑝-adapted mesh at varying remesh intervals using the threshold policy (𝜃 = 10−3)
for the in-distribution advecting ring case. Highlighted elements represent 𝑝-refinement.

A more quantitative comparison between the two approaches was performed by analyzing the error, cost, and
efficiency for the given test case. A Pareto plot showing the normalized cost vs. error distributions at varying threshold
values for the DynAMO and threshold policies is shown in Fig. 9. The threshold policy shows a clear Pareto front,
with the optimal efficiency achieved at 𝜃 = 10−3. As expected, the results of the DynAMO policy sit well within the
Pareto front of the threshold policy, showing higher efficiency through a much lower error as a result of the policy’s
ability to achieve preemptive refinement. This much lower error, represented by the green marker in the figure, was
achieved using an identical error threshold at evaluation time as with training time. Furthermore, a key feature of the
proposed DynAMO approach is that this error threshold 𝛼 can be varied at evaluation time to achieve different error
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and cost targets. The efficacy of this feature was evaluated by changing the error threshold at evaluation time, with the
values of 𝛼 varied between 0.1 and 0.8. It can be seen that this results in a similar Pareto front to the threshold policy,
where the user can dictate the trade-off between error and cost. However, the key difference is that the DynAMO
policy unlocks regions of efficiency that are unattainable by conventional AMR approaches. The result is that the
DynAMO policy can achieve significantly lower error for a similar computational cost in comparison to these standard
AMR approaches. We remark here that the value of the error threshold 𝛼 used at training time may not necessarily
be the value that obtains the highest efficiency at evaluation time, which is exemplified in this case where the optimal
efficiency was achieved at 𝛼 = 0.5 whereas the training value was set as 𝛼train = 0.1. This is simply a result of the
trade-off between error and cost, where policies that prioritize one over the other will achieve lower efficiency than
ones that balance them equivalently and is the expected behavior for a policy that allows users to control error or cost
targets. The results from the policy using the training value 𝛼train will just be one point along that Pareto front.
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DynAMO (𝛼𝚝𝚛𝚊𝚒𝚗)

Figure 9: Pareto plot of normalized cost vs. error for 𝑝-refinement on the advection equations with DynAMO and the
threshold policy for the in-distribution advecting ring case. Contours of efficiency shown on the background. Red markers
represent a sweep of 𝛼 ∈ [0.1, 0.8] at evaluation time, green marker represents 𝛼 set to the training value of 𝛼train = 0.1.
Peak efficiency achieved at 𝛼 = 0.5.

5.1.2. In-distribution experiments
While this single example showcases the features and benefits of the DynAMO approach, it is of more interest to

observe how its efficacy holds up over a large sample of operating conditions. To this end, a comparison was performed
between the DynAMO policy and the threshold policy over 100 in-distribution samples of the advecting rings problem,
where the operating conditions were uniformly sampled over the training range. The efficiency, normalized error, and
normalized cost for the threshold policy at varying values of the absolute threshold 𝜃 is compared to the DynAMO
policy (evaluated at 𝛼train) in Table 1. At its peak, the threshold policy only achieves a mean efficiency of roughly 0.4,
with normalized mean error and cost values of 0.204 and 0.465, respectively. In comparison, the DynAMO policy at
𝛼 = 𝛼train, which is not necessarily even the value at which the policy achieves peak efficiency, showed a noticeable
increase in mean efficiency from 0.409 to 0.539 (31.8%). The extent of the computational benefits provided by the
DynAMO approach in comparison to the most efficient threshold policy is best seen in the relative error and cost
reduction. For effectively the same mean computational cost, the use of the DynAMO policy resulted in 93.1% less
mean error than the threshold policy, such that the DynAMO policy could achieve essentially the accuracy of a fully-
refined mesh with less than half of the cost. Achieving this level of accuracy with the threshold policy would require
over double the computational cost.
5.1.3. Generalization experiments

The generalization capabilities of the proposed DynAMO approach were then evaluated by applying the policy to
out-of-distribution problems, ones with characteristics that were not encountered during training. Three experiments
were conducted, testing the ability of the approach to generalize to finer meshes, different shapes for the initial con-
ditions, and longer simulation times. The mean efficiency for the threshold policy at varying values of the absolute
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Method Efficiency Normalized error Normalized cost

Threshold (𝜃 = 10−2) 0.076 (0.946) 0.850 (1.008) 0.087 (0.060)
Threshold (𝜃 = 10−3) 0.409 (0.313) 0.204 (0.416) 0.465 (0.130)
Threshold (𝜃 = 10−4) 0.233 (0.302) 0.099 (0.370) 0.715 (0.151)
Threshold (𝜃 = 10−5) 0.141 (0.185) 0.057 (0.234) 0.838 (0.114)
Threshold (𝜃 = 10−6) 0.083 (0.115) 0.039 (0.168) 0.904 (0.081)
Threshold (𝜃 = 10−7) 0.053 (0.063) 0.019 (0.090) 0.943 (0.058)

DynAMO 0.539 (0.124) 0.014 (0.052) 0.457 (0.126)
DynAMO/Optimal 𝜃 +31.8% -93.1% -1.7%

Table 1: Comparison of the mean efficiency, normalized error, and normalized cost for 𝑝-refinement on the advection
equation with DynAMO and the threshold policy for the advecting rings over 100 in-distribution runs using uniform random
initial conditions. Standard deviation is shown in parentheses.

threshold 𝜃 and the DynAMO policy evaluated at 𝛼train is shown in Table 2 for the three experiments over 100 samples.
For the generalization to finer meshes, the initial mesh resolution was increased from 𝑁 = 242 to 𝑁 = 962, such that
the base finite element space consisted of nearly 105 degrees of freedom. It can be seen that while the increase in mesh
resolution increased the peak efficiency of the threshold policy, the efficiency of the DynAMO policy also increased
appropriately, such that the relative efficiency benefits of DynAMO stayed approximately the same. This positive result
can be attributed to the highly generalizable nature of the novel observation proposed in this work, which is insensitive
to mesh resolution and problem scale.

Method In-distribution Finer mesh Different shapes Longer sim. time

Threshold (𝜃 = 10−2) 0.076 (0.946) 0.113 (0.186) 0.000 (0.002) 0.121 (0.185)
Threshold (𝜃 = 10−3) 0.409 (0.313) 0.337 (0.255) 0.121 (0.120) 0.429 (0.396)
Threshold (𝜃 = 10−4) 0.233 (0.302) 0.567 (0.244) 0.483 (0.260) 0.281 (0.171)
Threshold (𝜃 = 10−5) 0.141 (0.185) 0.487 (0.192) 0.435 (0.282) 0.160 (0.120)
Threshold (𝜃 = 10−6) 0.083 (0.115) 0.291 (0.190) 0.307 (0.149) 0.090 (0.080)
Threshold (𝜃 = 10−7) 0.053 (0.063) 0.184 (0.172) 0.193 (0.112) 0.050 (0.054)

DynAMO 0.539 (0.124) 0.774 (0.135) 0.568 (0.107) 0.840 (0.116)
DynAMO/Optimal 𝜃 +31.8% +36.5% +17.6% +95.8%

Table 2: Comparison of the mean efficiency for 𝑝-refinement on the advection equation with DynAMO and the threshold
policy for the advecting rings over 100 out-of-distribution runs using uniform random initial conditions with finer mesh
resolution, different advecting shapes, and longer simulation time. Standard deviation shown in parentheses. In-distribution
results from Table 1 shown for comparison.

To show that the trained policy is not overfitting to the solution features observed during training, a second general-
ization experiment was conducted by changing the class of initial conditions from “ring”-type shapes to “bump”-type
shapes of varying size and width, characterized by the Gaussian function

𝑢(𝑥, 𝑦, 0) = ℎ exp
(
−𝑤

(
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2

))
, (26)

where the parameters 𝑥0, 𝑦0, ℎ, and 𝑤 were uniformly distributed across the ranges 𝑥0 ∈ [0.3, 0.7], 𝑦0 ∈ [0.3, 0.7],
ℎ ∈ [0.2, 1], and 𝑤 ∈ [25, 100]. The efficiency comparison in Table 2 shows that the efficacy of the DynAMO policy
does not deteriorate with changing initial conditions, but in fact marginally increases. However, due to the simple
nature of the bump shape, the efficiency of the threshold policy also increased, such that the efficiency benefits of
DynAMO were not as pronounced.

Finally, the ability to generalize to longer simulation times was tested by increasing the simulation length (and
total number of remeshing cycles) by a factor of eight. We note here that for simple linear problems such as advection,
these experiments may not necessarily show generalization to out-of-distribution problems as the observed features
do not vary much over time, but they act as a verification that the fixed episode length used for training does not
affect evaluation for longer episode lengths and showcase the type of problems where anticipatory mesh refinement
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is expected to yield the most benefits. For this experiment, it is expected that an anticipatory refinement approach
would yield far superior performance as it would be able to mitigate the introduction of discretization error much more
effectively, error which would continuously accumulate over the course of the simulation. As can be seen from Table 2,
this was indeed the case, with the DynAMO policy achieving nearly double the efficiency of the standard threshold
policy.
5.2. Advection with ℎ-refinement

With the successful application of the DynAMO approach to the advection equation with 𝑝-refinement, the more
complex case of ℎ-refinement, where the number of elements varies throughout the simulation, was attempted. For con-
sistency with the results of the 𝑝-refinement experiments, we utilize effectively the same experimental setup, although
the results are expected to vary due to differences in the choice of error estimators and the efficacy of ℎ-refinement
versus 𝑝-refinement for smooth solutions. The purpose of these experiments is primarily to validate the proposed
methodology for ℎ-refinement where mesh inhomogeneity is addressed from the coarse agent level. The training
reward curve is presented in Fig. 10, showing nearly identical behavior to the 𝑝-refinement case.
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Figure 10: Batch-averaged (negative) reward with respect to number of environment steps during the training process
for ℎ-refinement on the advection equations.

5.2.1. Sample problem
The training procedure was repeated identically to the 𝑝-refinement experiments and the resulting approach was

compared to the threshold policy for the same advecting ring case, with the initial conditions given by Eq. (25). The
ℎ-adapted mesh and solution evolution across 4 remesh times as computed by the DynAMO policy (𝛼 = 𝛼train) and the
threshold policy (𝜃 = 10−3) is shown in Fig. 11 and Fig. 12, respectively. Much like with the 𝑝-refinement case, it can
be seen that the threshold policy based on the instantaneous error estimator results in an isotropic refinement pattern
centered on the ring, which does not adequately account for the movement of the ring between remesh intervals. This
resulting introduction of discretization error cause irregular refinement patterns later in the simulation. In contrast,
the ℎ-refinement DynAMO policy showed similar behavior to the 𝑝-refinement DynAMO policy, with an anistropic
refinement pattern stretched in the direction of propagation. This predictive refinement persisted across the entire
simulation time, such that the feature of interest remained within the refined region throughout. Furthermore, it was
observed that the DynAMO policy tended to produce contiguous regions of refined elements, which would be the
proper refinement pattern for linearly advecting compactly-supported features.

A quantitative comparison of the error, cost, and efficiency between the DynAMO policy and the threshold policy
for the advecting ring case is shown in the Pareto plot in Fig. 13. By varying the error threshold parameter, both the
threshold policy and the DynAMO policy showed the typical Pareto front. However, much like with the 𝑝-refinement
case, the DynAMO policy achieved noticeably higher efficiency than the threshold policy. For a given computational
cost, the DynAMO policy was able to achieve a significantly lower error. Furthermore, by varying the error threshold

T. Dzanic et al.: Preprint submitted to Elsevier Page 20 of 42



DynAMO: Multi-agent reinforcement learning for dynamic anticipatory mesh optimization

(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 11: Solution contours overlaid with ℎ-adapted mesh at varying remesh intervals using DynAMO for the in-
distribution advecting ring case.

(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 12: Solution contours overlaid with ℎ-adapted mesh at varying remesh intervals using the threshold policy
(𝜃 = 10−3) for the in-distribution advecting ring case.
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Figure 13: Pareto plot of normalized cost vs. error for 𝑝-refinement on the advection equations with DynAMO and the
threshold policy for the in-distribution advecting ring case. Contours of efficiency shown on background. Red markers
represent a sweep of 𝛼 ∈ [0.1, 2.0] at evaluation time, green marker represents 𝛼 set to the training value of 𝛼train = 0.1.
Peak efficiency achieved at 𝛼 = 0.8.

parameter 𝛼 at evaluation time, various points on that Pareto front could be achieved, such that error and cost targets
could be specified by the user. We remark here that again the DynAMO policy did not necessarily achieve peak
efficiency for the error threshold parameter used at training time, which resulted in refinement decisions that were
biased more towards error reduction than cost reduction. Nevertheless, the efficiency of the DynAMO policy evaluated
over a wide range of values of the error threshold parameter was noticeably higher than the threshold policy at its peak
efficiency. These results, which show a marked consistency with the results of the 𝑝-refinement policy, indicate that the
proposed multi-agent reinforcement learning approach for ℎ-refinement using coarse level agents is highly effective
and adequately sidesteps the agent creation/deletion problem without sacrificing performance.
5.2.2. In-distribution experiments

To verify that these observations extend over many sampled initial conditions, the mean efficiency, normalized
error, and normalized cost over 100 randomly sampled in-distribution conditions was calculated, the results of which
are presented in Table 3 for the threshold policy at varying values of the error threshold 𝜃 and the DynAMO policy at the
training error threshold value 𝛼 = 𝛼train. It can be seen that the DynAMO approach still retains efficiency benefits over
the baseline threshold policy, with nearly a 20% increase in the mean efficiency. Furthermore, the error-to-cost ratio
of the DynAMO approach was significantly lower, showing a nearly 99% decrease in the error for approximately 30%
higher computational cost. This accuracy was on par with the accuracy of a fully-refined mesh, which would require
nearly double the computational cost. We remark here that the efficiency increase of DynAMO in the ℎ-refinement
case was lower than the 𝑝-refinement case, but this was primarily due to the choice of error threshold 𝛼. At the training
value 𝛼 = 𝛼train, the results of the DynAMO policy for ℎ-refinement were farther along the Pareto front, which is
evidenced by Fig. 13 and the relative error in Table 3. Much like with the 𝑝-refinement policy, even higher efficiencies
could be obtained by modifying the value of 𝛼 as the taken training value biases towards higher error reduction instead
of peak efficiency.
5.2.3. Generalization experiments

Finally, the generalization experiments were repeated for out-of-distribution problems, such as finer meshes, dif-
ferent classes of initial conditions, and longer simulation times. A comparison of the threshold policy at varying values
of the error threshold 𝜃 and the DynAMO policy at the training error threshold value 𝛼 = 𝛼train performed over 100
samples is shown in Table 4 for the three experiments. When the initial mesh resolution was increased from 𝑁 = 242
to 𝑁 = 962, the DynAMO approach showed a notably higher efficiency (67.1%) than the threshold policy. This ef-
ficiency gain was significantly higher than with the similar experiment on 𝑝-refinement, but this was primarily as a
result of the threshold policy showing poorer performance on the fine mesh with ℎ-refinement than with 𝑝-refinement.
For the generalization to different initial condition shapes, the DynAMO approach retained the efficiency benefits,
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Method Efficiency Normalized error Normalized cost

Threshold (𝜃 = 10−2) 0.174 (0.135) 0.815 (0.157) 0.084 (0.056)
Threshold (𝜃 = 10−3) 0.407 (0.193) 0.417 (0.212) 0.401 (0.098)
Threshold (𝜃 = 10−4) 0.299 (0.159) 0.121 (0.166) 0.675 (0.140)
Threshold (𝜃 = 10−5) 0.191 (0.147) 0.056 (0.144) 0.797 (0.128)
Threshold (𝜃 = 10−6) 0.121 (0.116) 0.029 (0.126) 0.872 (0.098)
Threshold (𝜃 = 10−7) 0.079 (0.072) 0.012 (0.048) 0.920 (0.071)

DynAMO 0.480 (0.106) 0.006 (0.044) 0.519 (0.108)
DynAMO/Optimal 𝜃 +17.9% -98.6% +29.4%

Table 3: Comparison of the mean efficiency, normalized error, and normalized cost for ℎ-refinement on the advection
equation with DynAMO and the threshold policy for the advecting rings over 100 in-distribution runs using uniform random
initial conditions. Standard deviation shown in parentheses.

Method In-distribution Finer mesh Different shapes Longer sim. time

Threshold (𝜃 = 10−2) 0.174 (0.135) 0.092 (0.153) 0.000 (0.002) 0.098 (0.137)
Threshold (𝜃 = 10−3) 0.407 (0.193) 0.283 (0.199) 0.040 (0.145) 0.399 (0.197)
Threshold (𝜃 = 10−4) 0.299 (0.159) 0.483 (0.210) 0.484 (0.163) 0.328 (0.142)
Threshold (𝜃 = 10−5) 0.191 (0.147) 0.475 (0.154) 0.479 (0.140) 0.206 (0.132)
Threshold (𝜃 = 10−6) 0.121 (0.116) 0.291 (0.160) 0.351 (0.143) 0.128 (0.099)
Threshold (𝜃 = 10−7) 0.079 (0.072) 0.196 (0.145) 0.241 (0.128) 0.076 (0.068)

DynAMO 0.480 (0.106) 0.807 (0.129) 0.540 (0.110) 0.719 (0.081)
DynAMO/Optimal 𝜃 +17.9% +67.1% +11.5% +80.2%

Table 4: Comparison of the mean efficiency for ℎ-refinement on the advection equation with DynAMO and the threshold
policy for the advecting rings over 100 out-of-distribution runs using uniform random initial conditions with finer mesh
resolution, different advecting shapes, and longer simulation time. Standard deviation shown in parentheses. In-distribution
results from Table 3 shown for comparison.

resulting in a similar increase in efficiency between DynAMO and the optimal threshold policy. Extensions to longer
simulation times showed the most drastic results, with approximately 80% higher efficiency with DynAMO compared
to the optimal threshold policy due to superior error mitigation from preemptive refinement. These results are notably
similar to the results of the 𝑝-refinement experiments, indicating that the proposed method for coarse-level observations
in ℎ-refinement does not degrade the accuracy and generalizability of the DynAMO approach.
5.3. Euler equations with 𝑝-refinement

With the preliminary experiments for the linear advection equation showing promising results for both 𝑝- and
ℎ-refinement, the proposed DynAMO approach was extended to the much more complex task of AMR for the com-
pressible Euler equations. Due to the inefficacy of 𝑝-refinement for discontinuous features, the 𝑝-refinement policy
and experiments for the Euler equations focus strictly on smooth solutions while discontinuous solutions are later
considered in the ℎ-refinement experiments. For this class of solutions, common representative cases are convection-
dominated and acoustic-type problems, where nonlinear flow physics are introduced through bulk propagation and
pressure-wave interactions. To this end, the DynAMO policy for 𝑝-refinement on the Euler equations was trained on
a class of solutions containing multiple convecting pressure pulses/waves, where the initial conditions were

𝜌(𝑥, 𝑦, 0) = 1, (27a)
𝑢(𝑥, 𝑦, 0) = 𝑢0, (27b)
𝑣(𝑥, 𝑦, 0) = 𝑣0, (27c)

𝑃 (𝑥, 𝑦, 0) =
𝑛𝑝∑
𝑖=1

ℎ𝑖 exp
(
−𝑤𝑖

(
(𝑥 − 𝑥𝑖,0)2 + (𝑦 − 𝑦𝑖,0)2

))
, (27d)
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where the parameters 𝑢0, 𝑣0, ℎ, 𝑤, 𝑥0, and 𝑦0 were uniformly distributed across the ranges 𝑢0 ∈ [0.0, 3.0], 𝑣0 ∈
[0.0, 3.0], 𝑛𝑝 ∈ {1, 2, 3}, ℎ ∈ [0.05, 0.2], 𝑤 ∈ [200, 700], 𝑥0 ∈ [0.25, 1.25], and 𝑦0 ∈ [0.25, 1.25]. The number of
pressure pulses 𝑛𝑝 was chosen randomly, and the characteristic parameters of each pulse were independently sampled
from their respective distributions. The domain size was set to Ω = [0, 1.5]2, the remesh time was set as 𝑇 = 0.05
with a total number of 4 RL steps, and the initial mesh distribution was set as 𝑁 = 482. The training reward curve
over the training period is shown in Fig. 14.
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Figure 14: Batch-averaged (negative) reward with respect to number of environment steps during the training process
for 𝑝-refinement on the Euler equations.

5.3.1. Sample problem
For these flow conditions, pressure sources, initialized as smooth Gaussian bumps, cause outward-running acoustic

waves centered over a compact low-density/low-energy region. The combination of this acoustic propagation with a
background convecting velocity yields interesting flow behavior, particular in the energy field where features with steep
flow gradients are separated by relatively flat regions, presenting an ideal case for AMR. We first present an example of
the DynAMO approach applied to this class of problems for a randomly selected in-distribution set of initial conditions
with the parameters equal to 𝑢0 = 2.25, 𝑣0 = 2.67, ℎ = 0.12, 𝑤 = 580, 𝑥0 = 0.3, and 𝑦0 = 0.53. The evolution of
the total energy and 𝑝-adapted mesh as computed by the DynAMO approach (with 𝛼 = 𝛼train) across 18 remesh time
intervals, much longer than the 4 remesh time intervals used for training, is shown in Fig. 15. The spatio-temporal
evolution of the flow for this class of problems is notably more complex than the convecting density pulse case as a result
of the nonlinear acoustic wave interactions. However, even with the significantly longer simulation time, the DynAMO
approach was able to preemptively refine regions of the prior to features of interest appearing. At earlier times, the
evolution of the acoustic wave was dominated by the background convective velocity, such that the refinement pattern
was reminiscent of advection-type problems, with an elongated refinement region stretched in the direction of the
propagation velocity. However, as the pressure gradients drove the flow outwards from the pulse center, the preemptive
refinement capability of DynAMO was able to accurately account for both the wave propagation and convection. At
later times, the acoustic wave propagated far enough from its origin such that a region of low variation in the solution
existed between the low energy center and the wave front. The DynAMO policy appropriately de-refined this region
without erroneously de-refining the regions across which the wave front propagated. Furthermore, the collisions of the
acoustic wave fronts were preemptively predicted in the refinement patterns, indicating that the proposed approach can
effectively account for nonlinear flow physics in which the characteristic direction of propagation can strongly vary
across elements (e.g., colliding wave fronts).
5.3.2. In-distribution experiments

To quantify the capability of the DynAMO approach for this case and present a comparison to baseline methods,
the normalized cost vs. error distributions are shown in the Pareto plot in Fig. 16 for the DynAMO policy and the
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(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇 (e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇

(g) Remesh, 3𝑇 (h) Solution, 4𝑇 (i) Remesh, 4𝑇 (j) Solution, 5𝑇 (k) Remesh, 5𝑇 (l) Solution, 6𝑇

(m) Remesh, 6𝑇 (n) Solution, 7𝑇 (o) Remesh, 7𝑇 (p) Solution, 8𝑇 (q) Remesh, 8𝑇 (r) Solution, 9𝑇

(s) Remesh, 9𝑇 (t) Solution, 10𝑇 (u) Remesh, 10𝑇 (v) Solution, 11𝑇 (w) Remesh, 11𝑇 (x) Solution, 12𝑇

(y) Remesh, 12𝑇 (z) Solution, 13𝑇 (aa) Remesh, 13𝑇 (ab) Solution, 14𝑇 (ac) Remesh, 14𝑇 (ad) Solution, 15𝑇

(ae) Remesh, 15𝑇 (af) Solution, 16𝑇 (ag) Remesh, 16𝑇 (ah) Solution, 17𝑇 (ai) Remesh, 17𝑇 (aj) Solution, 18𝑇
Figure 15: Contours of total energy overlaid with 𝑝-adapted mesh at varying remesh intervals using DynAMO for the
convecting pressure pulse problem. Highlighted elements represent 𝑝-refinement.
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standard threshold policy. Both policies were evaluated over a range of threshold parameters to observe the effects
on error, cost, and efficiency. For the threshold policy, where the threshold parameter was varied 𝜃 = 10−2 to 10−11,
a linear relation was observed in the cost to error profile, with the most optimal value yielding a peak efficiency of
roughly 0.65. In contrast, the DynAMO policy was able to produce a far more efficient AMR approach. At the
training threshold value 𝛼train = 0.1, the policy was able to achieve an efficiency of approximately 0.9 with almost
zero normalized error, yielding results of similar accuracy to a fully refined mesh. In contrast, the threshold policy
could only achieve a normalized error of approximately 0.5 for the same computational cost. Similarly, to achieve
the same normalized error, the threshold policy required roughly quadruple the computational cost. When the error
threshold for the DynAMO policy was varied at evaluation time from 𝛼 = 10−6 to 0.6, the quintessential convex Pareto
curve was recovered with the sampled results much more closely distributed near the origin. Most importantly, all of
the sampled points along that curve were well within the bounds of the threshold policy results, showcasing that the
proposed approach can unlock efficiency levels that are out of reach with conventional AMR techniques.
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Figure 16: Pareto plot of normalized cost vs. error for 𝑝-refinement on the Euler equations with DynAMO and the
threshold policy for the in-distribution convecting pressure pulse case. Contours of efficiency shown on background. Red
markers represent a sweep of 𝛼 ∈ [10−6, 0.6] at evaluation time, green marker represents 𝛼 set to the training value of
𝛼train = 0.1. Peak efficiency achieved at 𝛼 = 0.2.

To verify that the increased efficiency of the proposed DynAMO approach persists across a wide distribution of
test cases, a comparison of the DynAMO approach (𝛼 = 𝛼train) and the threshold policy was performed across 100
randomly sampled in-distribution initial conditions. The results of the comparison are shown in Table 5 for varying
threshold values for the threshold policy. At its peak, the threshold policy achieves a mean efficiency of 0.664, with
normalized mean error and cost values of 0.184 and 0.277, respectively. In comparison, the DynAMO policy achieved
a noticeably higher mean efficiency, 0.882, a relative increase of 32.8%. The benefits of the DynAMO approach were
more pronounced when observing the relative decrease in mean error and computational cost. The DynAMO policy
achieved a relative mean error of 0.005, which effectively results in a level of accuracy identical to a fully-refined
mesh. This error was 97.3% less than the mean error provided by the most efficient threshold policy. Furthermore,
the DynAMO policy achieved this level of error with a relative mean computational cost of 0.118, which is 57.4% less
than the computational cost of the most efficient threshold policy that results in a mean error that is nearly 40 times
higher. To achieve the level of error provided by the DynAMO policy, the threshold policy would essentially have to
utilize a fully-refined mesh, such that the mean computational cost would be almost 10 times higher. Conversely, for
the same mean computational cost as the DynAMO policy, the use of the threshold policy would result in more than
two orders of magnitude increase in error.
5.3.3. Generalization experiments

The efficacy and generalization capabilities of the DynAMO approach were further evaluated through experiments
for out-of-distribution problems, where the threshold parameter of the threshold policy was varied and the threshold
parameter for the DynAMO policy was set to its training value. For brevity, certain results for the threshold policy are
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Method Efficiency Normalized error Normalized cost

Threshold (𝜃 = 10−2) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
Threshold (𝜃 = 10−3) 0.005 (0.020) 0.995 (0.020) 0.002 (0.001)
Threshold (𝜃 = 10−4) 0.250 (0.048) 0.749 (0.049) 0.031 (0.006)
Threshold (𝜃 = 10−5) 0.325 (0.023) 0.672 (0.023) 0.062 (0.006)
Threshold (𝜃 = 10−6) 0.377 (0.033) 0.615 (0.034) 0.093 (0.008)
Threshold (𝜃 = 10−7) 0.455 (0.032) 0.529 (0.034) 0.131 (0.009)
Threshold (𝜃 = 10−8) 0.525 (0.038) 0.442 (0.045) 0.172 (0.010)
Threshold (𝜃 = 10−9) 0.593 (0.040) 0.339 (0.055) 0.221 (0.011)
Threshold (𝜃 = 10−10) 0.664 (0.029) 0.184 (0.057) 0.277 (0.011)
Threshold (𝜃 = 10−11) 0.661 (0.011) 0.044 (0.026) 0.335 (0.011)

DynAMO 0.882 (0.022) 0.005 (0.008) 0.118 (0.023)
DynAMO/Optimal 𝜃 +32.8% -97.3% -57.4%

Table 5: Comparison of the mean efficiency, normalized error, and normalized cost for 𝑝-refinement on the Euler equations
with DynAMO and the threshold policy for the convecting pressure pulse problem over 100 in-distribution runs using uniform
random initial conditions. Standard deviation shown in parentheses.

omitted as the recovered efficiency levels were not significant.
The first generalization experiment was performed with respect to different flow physics through the convecting

density pulse problem. This problem is given by the initial conditions
𝜌(𝑥, 𝑦, 0) = 1 + ℎ exp

(
−𝑤

(
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2

))
, (28a)

𝑢(𝑥, 𝑦, 0) = 𝑢0, (28b)
𝑣(𝑥, 𝑦, 0) = 𝑣0, (28c)
𝑃 (𝑥, 𝑦, 0) = 1, (28d)

where the parameters 𝑢0, 𝑣0, ℎ, 𝑤, 𝑥0, and 𝑦0 were uniformly distributed across the same ranges as Eq. (27a). For
this setup, a perturbation in the density field convects at a constant velocity and direction, much like in the advection
problems. Besides showing the generalizability of the proposed observation and reward functions, the purpose of this
example is to show a direct extension of the DynAMO approach from the advection equation to the Euler equations for
a problem which effectively exhibits the same physics but achieves it from a more complex set of governing equations.
Recall that while the evolution of the density field is linear with respect to the solution, the evolution of the total energy
field, the solution component which is actually being observed by the policy, is not.

While the flow physics may seem relatively simple, this particular class of problems presents a very interesting test
for the proposed policy as the initial distribution of the total energy, the observable quantity, is effectively identical
between these cases and the pressure pulses that the policy was trained on, but the resulting flow fields are radically
different. As such, it presents a validation of the ability of the proposed approach in learning the physics of the
underlying governing equations as opposed to simply extrapolating from previously encountered flow problems. A
comparison between the threshold policy and DynAMO policy over 100 randomly sampled initial conditions for the
problem is shown in Table 6. Due to the compactly supported nature of the convecting density problem, the threshold
policy was able to achieve a high mean efficiency, 0.799. However, the DynAMO policy was able to achieve even
higher, 0.955, almost reaching the theoretical limit of unity. The relative efficiency benefits of the DynAMO approach
over the optimal threshold policy remained similar to the in-distribution case, such that it can be surmised that the
approach may have the ability to effectively generalize to flow physics not encountered during the training process.

To present an visualization of the approach for the convecting density pulse problem, a random initial condition
was chosen from the distribution with parameters equal to 𝑢0 = 2.46, 𝑣0 = 2.99, ℎ = 0.08, 𝑤 = 267, 𝑥0 = 0.3, and
𝑦0 = 0.53. The evolution of the total energy and 𝑝-adapted mesh as obtained by the DynAMO policy trained on the
pressure pulse cases is shown in Fig. 17. For brevity, we present only the first four remesh intervals, although this
behavior was essentially identical at later simulation times. Furthermore, the results are shown with respect to the total
energy, which is the observable field, instead of the density, but these distributions are nearly identical for a constant
background velocity and pressure. It can be seen that similar behavior as with the policies trained on the advection
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Method In-distribution Convecting density Finer mesh Longer remesh time Longer sim. time

Threshold (𝜃 = 10−2) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Threshold (𝜃 = 10−4) 0.250 (0.048) 0.015 (0.003) 0.007 (0.006) 0.011 (0.005) 0.020 (0.011)
Threshold (𝜃 = 10−6) 0.377 (0.033) 0.036 (0.007) 0.200 (0.062) 0.025 (0.022) 0.114 (0.046)
Threshold (𝜃 = 10−8) 0.525 (0.038) 0.073 (0.008) 0.637 (0.092) 0.075 (0.053) 0.495 (0.025)
Threshold (𝜃 = 10−9) 0.593 (0.040) 0.099 (0.009) 0.738 (0.076) 0.124 (0.076) 0.516 (0.022)
Threshold (𝜃 = 10−10) 0.664 (0.029) 0.128 (0.011) 0.824 (0.032) 0.224 (0.084) 0.507 (0.014)
Threshold (𝜃 = 10−11) 0.661 (0.011) 0.163 (0.012) 0.843 (0.007) 0.308 (0.038) 0.456 (0.015)
Threshold (𝜃 = 10−12) 0.607 (0.010) 0.799 (0.012) 0.820 (0.008) 0.348 (0.020) 0.394 (0.014)
Threshold (𝜃 = 10−14) 0.493 (0.010) 0.707 (0.013) 0.757 (0.010) 0.429 (0.040) 0.284 (0.011)
Threshold (𝜃 = 10−15) 0.342 (0.020) 0.459 (0.034) 0.478 (0.047) 0.470 (0.024) 0.183 (0.010)

DynAMO 0.882 (0.022) 0.955 (0.014) 0.910 (0.012) 0.568 (0.074) 0.726 (0.026)
DynAMO/Optimal 𝜃 +32.8% +19.5% +7.9% +20.8% +40.1%

Table 6: Comparison of the mean efficiency for 𝑝-refinement on the Euler equations with DynAMO and the threshold
policy for the two-dimensional convecting pressure-pulse over 100 out-of-distribution runs using uniform random initial
conditions with finer mesh resolution, longer remesh time, and longer simulation time. Standard deviation shown in
parentheses. In-distribution results from Table 5 shown for comparison. All sampled thresholds are not shown for brevity.

(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 17: Contours of total energy overlaid with 𝑝-adapted mesh at varying remesh intervals using DynAMO for the
convecting density pulse problem. Highlighted elements represent 𝑝-refinement.

equation is recovered, even with the more complex underlying governing equations and observations. The DynAMO
policy predicts an elongated refinement region at the initial time, which adequately covers the propagation path of the
density pulse. This preemptive refinement capability is maintained throughout the entire simulation time, such that
the density pulse always remains within the refined region of the mesh. While the physics of the problem are simple,
these results showcase a direct connection between linear and nonlinear equations for the proposed formulation.

The next generalization experiment was performed with respect to the mesh resolution. The base mesh resolution
was increased from 𝑁 = 482 to 𝑁 = 962, such that the total number of degrees of freedom was over 3 ⋅ 105 at the
coarsest level. The mean efficiency across 100 sampled initial conditions on the finer mesh level is shown in Table 6
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for both the DynAMO policy and the threshold policy. It can be seen that both policies recover a higher efficiency
on the finer mesh which is consistent with previous results. For the threshold policy, this efficiency increased from
0.664 to 0.843, whereas for the DynAMO policy, this efficiency increased from 0.882 to 0.910. As a result, the relative
benefit of DynAMO was lower, only 7.9%, but this is largely attributed to the marginal gains possible at the highest
efficiency levels. However, the results indicate that the DynAMO policy can very effectively generalize to different
mesh resolutions for the Euler equations.

The third generalization experiment was performed with respect to the remesh time 𝑇 , which was doubled from its
training value. With longer remesh time intervals, it is expected that the efficiency of policies based on instantaneous
error estimators would degrade. This behavior was indeed observed for the threshold policy, also shown in Table 6,
where the highest mean efficiency was 0.470 over 100 randomly sampled initial conditions, noticeably less than the
in-distribution result of 0.664. Furthermore, this efficiency was only recovered at machine zero values of the threshold
parameter, meaning that the policy refines any element with a non-constant total energy distribution. A notably more
efficient approach was recovered with the DynAMO policy, with a mean efficiency of 0.568. These relative efficiency
benefits were on par with the increase observed for the in-distribution experiments, indicating that the approach can
also effectively generalize to longer remesh times.

The final generalization experiment was performed with respect to the total simulation time, which was also doubled
from its training value. The comparison of the threshold policy at varying values of the threshold parameter to the
DynAMO approach over 100 randomly sampled initial conditions is shown in Table 6. It can be seen that the peak
efficiency of the threshold approach decreased from 0.664 to 0.516, but the mean efficiency of the DynAMO approach
decreased as well, from 0.882 to 0.726. This decrease in efficiency is somewhat expected at longer simulation times
for flows whose complexity increases over time as the most appropriate refinement decision tends toward uniform
refinement, which is seen in Fig. 15, such that the increase in normalized cost decreases the efficiency. However, we
observe that the efficiency benefits of the DynAMO approach do not deteriorate for longer simulation times but, in
fact, noticeably appreciate. This further supports the generalization abilities of the proposed approach.
5.4. Euler equations with ℎ-refinement

Following the initial evaluation of the proposed DynAMO approach for the Euler equations on smooth problems,
the approach was then extended to significantly more complex and highly nonlinear flow physics featuring shocks,
rarefaction waves, and discontinuities. The discontinuous, compact nature of many of these features paired with their
nonlinear evolution presents an ideal example for problems where anticipatory mesh refinement would excel while
methods based on instantaneous estimators would be unsuccessful. Due to the lack of smoothness of these features,
ℎ-refinement was used for the policies as it is typically better suited to resolve such features.

When relaxing the constraint of smoothness in the flow, a wide variety of problems with different flow physics
become available for the Euler equations. To evaluate the efficacy of the approach for a sufficiently diverse set of
flow physics, we consider the quintessential example of a two-dimensional Riemann problem [49], which possesses
complex nonlinear flow behavior including shock waves, contact discontinuities, rarefaction waves, vortical flow,
Kelvin–Helmholtz and Richtmyer–Meshkov instabilities, and shock-vortex interactions. This problem is initialized
by subdividing the domain into four respective quadrants, shown in Fig. 18, each with their own unique initial state.
The partition between these states is representative of a physical diaphragm separating individual gases which is in-
stantaneously broken, allowing for the interaction of these gases. Unless otherwise stated, we utilize a unit domain
Ω = [0, 1]2 with the diaphragms placed at 𝑥0 = 𝑦0 = 0.5, respectively. Furthermore, the domain is set as periodic,
such that the numerical setup is representative of an infinite array of two-dimensional Riemann problems. While the
enforcement of periodic boundary conditions is not standard for two-dimensional Riemann problems, this helps to
increase the efficiency of the training process by increasing the overall complexity and variation of features encoun-
tered per episode (i.e., a single two-dimensional Riemann problem turns into four unique Riemann problems). For
brevity, we use the notation 𝑡𝑙, 𝑡𝑟, 𝑏𝑙, and 𝑏𝑟 to denote the top-left, top-right, bottom-left, and bottom-right quadrants,
respectively.

The DynAMO policy was trained on a variety of two-dimensional Riemann problems generated by uniformly
sampling the individual quadrant states from the distributions 𝜌 ∈ [0.2, 2], 𝑢 ∈ [−0.5, 0.5], 𝑣 ∈ [−0.5, 0.5], and
𝑃 ∈ [0.2, 2]. The remesh time was set as 𝑇 = 0.05 with a total number of 4 RL steps, and the initial mesh distribution
was set as 𝑁 = 322. Furthermore, to add more variation to the flow problems during training, we vary the placement
of the diaphragms within the ranges 𝑥0 ∈ [0.3, 0.7] and 𝑦0 ∈ [0.3, 0.7], but at evaluation time, these values were fixed
at 𝑥0 = 𝑦0 = 0.5. The reward curve for the agent during training is shown in Fig. 19.
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Figure 18: Schematic of the initial conditions and domain for the 2D Riemann problem.
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Figure 19: Batch-averaged (negative) reward with respect to number of environment steps during the training process
for ℎ-refinement on the Euler equations.

5.4.1. In-distribution experiments

Method Efficiency Normalized error Normalized cost

Threshold (𝜃 = 10−1) 0.215 (0.083) 0.763 (0.088) 0.177 (0.049)
Threshold (𝜃 = 10−2) 0.251 (0.056) 0.439 (0.111) 0.596 (0.061)
Threshold (𝜃 = 10−3) 0.180 (0.031) 0.291 (0.099) 0.760 (0.024)
Threshold (𝜃 = 10−4) 0.162 (0.027) 0.272 (0.093) 0.787 (0.009)
Threshold (𝜃 = 10−5) 0.157 (0.027) 0.266 (0.090) 0.795 (0.002)
Threshold (𝜃 = 10−6) 0.157 (0.027) 0.265 (0.090) 0.796 (0.000)

DynAMO 0.486 (0.073) 0.142 (0.092) 0.482 (0.090)
DynAMO/Optimal 𝜃 +93.6% -67.7% -19.1%

Table 7: Comparison of the mean efficiency, normalized error, and normalized cost for ℎ-refinement on the Euler
equations with DynAMO and the threshold policy for the two-dimensional Riemann problem over 100 in-distribution runs
using uniform random initial conditions. Standard deviation shown in parentheses.

An evaluation of the DynAMO policy with 𝛼 = 𝛼train and a comparison to the baseline threshold policy at varying
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values of the threshold parameter was first performed across 100 uniformly sampled in-distribution initial conditions.
The normalized error, cost, and efficiency for the two approaches is shown in Table 7. Due to the increased complexity
of the flow physics, the optimal threshold policy only achieved a mean efficiency of 0.251 with relatively large nor-
malized error and cost values of 0.439 and 0.596, respectively. Furthermore, it can be seen that the threshold policy
effectively stagnates around a minimum mean error of 0.265 even with a decreasing threshold value. This behav-
ior is as a result of the inability of instantaneous error estimators to account for the spatio-temporal evolution of the
error. For this particular set of problems, this largely manifests at the first time step, where the estimator evaluated
on the initially discontinuous state can, at best, predict a non-zero error only along (or one element adjacent to) the
discontinuities. As such, the adapted mesh based on the instantaneous error estimator quickly becomes suboptimal,
introducing a large degree of discretization error as the discontinuities evolve away from their initial positions. This
effect is also encountered at later times as the discontinuities propagate across the mesh, although to a lesser extent.
In contrast, the DynAMO approach showed a significantly better mean efficiency of 0.486, a 93.6% increase over the
optimal threshold policy. This increased efficiency also came with a significantly lower mean error, 0.142, a 67.7% de-
crease in comparison to the optimal threshold policy. Most importantly, this error was much lower than the minimum
error achievable with the threshold policy, showing that preemptive refinement decisions provided by the DynAMO
policy can achieve levels of accuracy that standard AMR approaches may not be able to. Additionally, this increased
accuracy came with a 19.1% decrease in the computational cost as a result of the more efficient refinement decisions
of the DynAMO policy.
5.4.2. Sample problems

To further validate the DynAMO approach, we consider canonical instances of two-dimensional Riemann problems
that are used as example cases for evaluating numerical methods. In particular, we consider the six Riemann problems
used in the work of Liska and Wendroff [50] which are derived from the work of Lax and Liu [51]. The initial conditions
as well as the final simulation time for these six Riemann problems, denoted by case numbers 3, 4, 6, 12, 15, and 17,
are shown in Table 8. For these problems, the standard implementation requires Neumann boundary conditions to
yield the expected flow patterns. As the current implementation of the DynAMO approach utilizes periodic meshes,
we replicate the effects of the required boundary conditions by extending the domain by a factor of two to Ω = [0, 2]2
and considering only the interior subdomain Ω′ = [0.5, 1.5]2 with the diaphragm placed at 𝑥0 = 𝑦0 = 1 . Due to
the finite rate of propagation of flow perturbations as well as the self-similarity of Riemann problems with respect to
the similarity parameter 𝑥∕𝑡, this approach yields identical results to applying Neumann boundary conditions on the
subdomain Ω′ over the time period of the problem. The characteristic mesh scale was kept identical by doubling the
resolution to 𝑁 = 642, and analysis of the cost and error was performed with respect to only the subdomain Ω′. We
remark here that these conditions are effectively out-of-distribution, not only due to the increased domain size and
mesh resolution but also due to the many of the quadrant states residing outside of the training distribution.

Case 𝜌𝑙 𝑢𝑙 𝑣𝑙 𝑃𝑙 𝜌𝑟 𝑢𝑟 𝑣𝑟 𝑃𝑟 𝑡𝑓
0.5323 1.206 0.0 0.3 1.5 0.0 0.0 1.5

3 0.138 1.206 1.206 0.029 0.5323 0.0 1.206 0.3 0.3

0.5065 0.8939 0.0 0.35 1.1 0.0 0.0 1.1
4 1.1 0.8939 0.8939 1.1 0.5065 0.0 0.8939 0.35 0.25

2.0 0.75 0.5 1.0 1.0 0.75 -0.5 1.0
6 1.0 -0.75 0.5 1.0 3.0 -0.75 -0.5 1.0 0.3

1.0 0.7276 0.0 1.0 0.5313 0.0 0.0 0.4
12 0.8 0.0 0.0 1.0 1.0 0.0 0.7276 1.0 0.25

0.5197 -0.6259 -0.3 0.4 1.0 0.1 -0.3 1.0
15 0.8 0.1 -0.3 0.4 0.5313 0.1 0.4276 0.4 0.2

2.0 0.0 -0.3 1.0 1.0 0.0 -0.4 1.0
17 1.0625 0.0 0.2145 0.4 0.5197 0.0 -1.1259 0.4 0.3

Table 8: Initial conditions for the two-dimensional Riemann problem tests from Liska and Wendroff [50]. Top and bottom
quadrant states shown in upper and bottom rows, respectively.
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A comparison of the normalized cost vs. error between the threshold policy and the DynAMO approach for these
six two-dimensional Riemann problem cases is shown through Pareto plots in Fig. 20. Due to the previously mentioned
inability of instantaneous error-based policies to appropriately refine the mesh at the initial state, the Pareto curve for
the threshold policy stagnates at above a fixed error and does not show as well-behaved of a curve as with the smooth
problems for 𝑝-refinement. As a result, the threshold policies did not achieve an efficiency of more than 0.4 for any of
the cases. Of the six cases, the threshold policy showed the worst performance for Case 6 and the best performance for
Case 4 and Case 12. In comparison, the DynAMO policy showed significantly better performance, generally achieving
an efficiency of approximately 0.6 with minor variation across the cases. This increase in efficiency resulted in the
policy achieving a similar error to the threshold policy with significantly lower computational cost, owing to its ability
to preemptively refine mesh regions prior to features appearing. These results provide an initial quantitative evaluation
of the proposed approach for providing more efficient adaptive mesh refinement strategies for complex problems of
practical interest.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

𝑐

𝑒

(f) Case 17
Figure 20: Pareto plot of normalized cost vs. error for ℎ-refinement on the Euler equations with DynAMO and the
threshold policy for the two-dimensional Riemann problem tests from Liska and Wendroff [50]. Contours of efficiency
shown on background.

The DynAMO policy and threshold policy was further qualitatively compared for these six two-dimensional Rie-
mann problems by observing the mesh refinement decisions. A comparison was made for Case 4 and Case 12 as these
are the cases for which the threshold policy showed the best performance. The threshold parameter value was set to
𝜃 = 10−2 which corresponds to the points of highest efficiency along the Pareto curve for both cases. The evolution
of the density and ℎ-adapted mesh for Case 4 as obtained by the DynAMO policy and threshold policy is shown in
Fig. 21 and Fig. 22, respectively. Note that the density is shown instead of the total energy, the observed quantity, as
this is the typical component used for comparison in the literature. It can be seen that at the initial time, the DynAMO
policy refines several elements ahead of the discontinuities. This refinement region covered the entire expansion wave
as well as the propagation of the discontinuities across the remesh interval. This behavior persisted at further times,
showcasing the preemptive refinement capabilities of DynAMO. Furthermore, as the expansion wave region became
sufficiently large, the DynAMO policy started to de-refine its interior which contains features with relatively low vari-
ation and, by extent, error. In comparison, the threshold policy could only refine the elements along the discontinuities
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and their immediate neighbors at the initial time. Therefore, by the next remesh time, the discontinuities propagated
outside of the refinement region. This behavior became more egregious at the next remesh interval, where both the
discontinuities as well as the expansion wave front moved outside of the refinement region, introducing a significant
degree of discretization error. This error resulted in some irregular refinement patterns at later times which contributed
to the cost of threshold policy without any benefits in the accuracy.

(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 21: Contours of density overlaid with ℎ-adapted mesh at varying remesh intervals using DynAMO for the Case 4
two-dimensional Riemann problem from Liska and Wendroff [50].

The comparison between the DynAMO policy and threshold policy for Case 12 is also shown through the evolution
of the density and ℎ-adapted mesh in Fig. 23 and Fig. 24, respectively. Much like with Case 4, the DynAMO policy was
able to preemptively refine the mesh at the initial time, such that the evolution of the discontinuities and expansion wave
was contained within the refined region. However, it must be noted that since the contact discontinuities bordering the
bottom-left quadrant are stationary, the DynAMO approach over-refined around these discontinuities. This behavior
was later corrected, such that the refined region consisted of only a single element-wide region. The DynAMO policy
did correctly predict the necessary refinement regions to cover the evolution of the discontinuities in the top-right
quadrant. At later times, when the expansion wave was sufficiently developed, the DynAMO policy de-refined the
interior region which could be sufficiently resolved on the coarse mesh level. For the threshold policy, an identical
initial refinement pattern was observed with Case 12 as with Case 4 due to the similarity of the initial states. However,
this refinement pattern also did not adequately cover the evolution of the discontinuities and expansion wave, such
that a significant amount of discretization error was introduced around the discontinuity front. This behavior persisted
throughout the simulation, with the threshold policy unable to adequately account for the propagation of the features.
5.4.3. Generalization experiments

The generalization capabilities of the DynAMO approach were further evaluated through out-of-distribution ex-
periments for problems on finer meshes, with longer remesh times, and with longer simulation times. The first gen-
eralization experiment was performed by increasing the base mesh resolution from 𝑁 = 322 to 642. A comparison
between the mean efficiency of the DynAMO approach and the threshold policy on this finer base mesh is shown in
Table 9 averaged over 100 runs. Both approaches showed an increase in mean efficiency, which is consist with previous
generalization experiments, with the optimal threshold policy increasing from 0.251 to 0.328 and the DynAMO policy
increasing from 0.486 to 0.545. This resulted in a relative efficiency increase of 66.2% with the DynAMO policy, such
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(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 22: Contours of density overlaid with ℎ-adapted mesh at varying remesh intervals using the threshold policy
(𝜃 = 10−2) for the Case 4 two-dimensional Riemann problem from Liska and Wendroff [50].

(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 23: Contours of density overlaid with ℎ-adapted mesh at varying remesh intervals using DynAMO for the Case 12
two-dimensional Riemann problem from Liska and Wendroff [50].
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(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

Figure 24: Contours of density overlaid with ℎ-adapted mesh at varying remesh intervals using the threshold policy
(𝜃 = 10−2) for the Case 12 two-dimensional Riemann problem from Liska and Wendroff [50].

that it significantly outperformed the threshold policy even on the finer mesh.

Method In-distribution Finer mesh Longer remesh time Longer sim. time

Threshold (𝜃 = 10−1) 0.215 (0.083) 0.280 (0.102) 0.223 (0.082) 0.226 (0.096)
Threshold (𝜃 = 10−2) 0.251 (0.056) 0.328 (0.082) 0.315 (0.052) 0.202 (0.065)
Threshold (𝜃 = 10−3) 0.180 (0.031) 0.245 (0.051) 0.299 (0.044) 0.084 (0.022)
Threshold (𝜃 = 10−4) 0.162 (0.027) 0.212 (0.041) 0.298 (0.042) 0.075 (0.021)
Threshold (𝜃 = 10−5) 0.157 (0.027) 0.193 (0.035) 0.298 (0.041) 0.073 (0.021)
Threshold (𝜃 = 10−6) 0.157 (0.027) 0.180 (0.030) 0.298 (0.041) 0.073 (0.021)

DynAMO 0.486 (0.073) 0.545 (0.069) 0.611 (0.048) 0.423 (0.113)
DynAMO/Optimal 𝜃 +93.6% +66.2% +93.9% +87.2%

Table 9: Comparison of the mean efficiency for ℎ-refinement on the Euler equations with DynAMO and the threshold
policy for the two-dimensional Riemann problem over 100 out-of-distribution runs using uniform random initial conditions
with finer mesh resolution, longer remesh time, and longer simulation time. Standard deviation shown in parentheses.
In-distribution results from Table 7 shown for comparison.

The second generalization experiment was performed with respect to the remesh time 𝑇 , where the remesh time was
doubled from its training value. A comparison between the mean efficiency of the DynAMO approach and the threshold
policy averaged over 100 runs for this longer remesh time is shown in Table 9. The optimal threshold policy showed a
marginal increase in efficiency in comparison to the in-distribution results, from 0.251 to 0.328. The DynAMO policy
also showed a similar increase, from 0.486 to 0.545. As such, the relative efficiency increase of the DynAMO policy
over the optimal threshold policy stayed almost identical to the in-distribution value, 93.9%, showcasing the ability of
the approach to generalize to arbitrary remesh times.

The third generalization experiment was performed with respect to the simulation time 𝑡𝑓 , where the simulation
time was doubled from its training value. Table 9 shows a comparison of the mean efficiency between the DynAMO
approach and the threshold policy over 100 runs for this longer simulation time. For both approaches, the mean
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efficiency marginally decreased, likely as a result of the chaotic nature of the flow at later times for which the policies
would tend towards more refinement. For the optimal threshold policy, this resulted in a mean efficiency decrease
from 0.251 to 0.226, whereas for the DynAMO policy, this resulted in a mean efficiency decrease from 0.486 to 0.423.
However, the DynAMO policy still showed a large relative efficiency increase over the threshold policy, 87.2%, which
is on par with the in-distribution results. These results indicate that the proposed approach can effectively generalize
to longer simulation times and, by extent, flow physics which were not encountered during the training process.

As a final validation of the DynAMO approach, we apply the DynAMO policy trained on two-dimensional Riemann
problems to a particular out-of-distribution problem: the two-dimensional radial Sod shock tube. This case is a more
complex form of the quintessential example of the shock tube which exhibits the three main features of the Riemann
problem, namely shock waves, contact discontinuities, and rarefaction waves. Furthermore, in its periodic form, it also
exhibits shock-shock and shock-contact interactions at longer simulation times. The problem is solved on the domain
Ω = [−0.5, 0.5]2, and the initial conditions are given as

[𝜌, 𝑢, 𝑣, 𝑃 ]𝑇 =

{
[𝜌𝑙, 0, 0, 𝑃𝑙]𝑇 , if √𝑥2 + 𝑦2 ≤ 0.25,
[𝜌𝑟, 0, 0, 𝑃𝑟]𝑇 , else, (29)

where 𝜌𝑙 = 1.0, 𝑃𝑙 = 1.0, 𝜌𝑟 = 0.125, and 𝑃𝑟 = 0.1. The base mesh resolution was set as 𝑁 = 322 and the remesh time
was set as 𝑇 = 0.05. The evolution of the density and ℎ-adapted mesh as obtained by the DynAMO policy is shown
in Fig. 25 over 8 remesh intervals. At the initial time, the DynAMO policy preemptively refines the region both inside
and outside of the initial discontinuity. This refinement region covers the propagation of the out-running shock front
and the in-running expansion wave front, although with a slight overprediction in the refinement region necessary to
cover the propagation distance of the shock. Furthermore, the interior region of the mesh was correctly left de-refined
as the expansion wave front did not reach this region over the remesh interval, although with some minor asymmetry
in the refinement patterns. Similar behavior was observed at the next few remesh intervals, with the DynAMO policy
accurately predicting the preemptive refinement decisions necessary to account for the evolution of the shock front. As
the shock front propagated towards the domain boundaries, certain spurious de-refinement decisions were chosen by
the policy which were not consistent with the decisions at other similar locations in mesh. However, these decisions
primarily acted to introduce some minor asymmetry in the refinement patterns without appreciably degrading the
accuracy of the approach. After the shock fronts propagated through the periodic boundaries, the shock-shock and
shock-contact interactions were correctly refined by the DynAMO policy. Furthermore, the interior region of the
mesh, where the solution variation was low, was appropriately de-refined, such that the approach effectively balanced
computational cost and accuracy. These results further showcase the ability of the proposed approach to be an effective
method of performing anticipatory mesh refinement for complex nonlinear flows and generalizing to flow physics not
encountered during training.

The two-dimensional Sod shock tube problem was also used to evaluate the computational cost of the proposed ap-
proach. The cost, shown in absolute CPU wall clock time, was computed for the problem across four major categories:
1) advancing the unsteady solver between remesh intervals; 2) computing the observation (i.e., evaluating the error
estimates, computing the observable quantities and metrics, etc.); 3) performing inference on the neural network; and
4) adapting the mesh and restructuring data. The absolute and relative computational costs of these four categories are
shown in Fig. 26. It can be seen that the unsteady solver was the predominant factor in the overall computational cost,
accounting for 93.1% of the total compute time. In contrast, the cost of the proposed approach was only 6.6% of the
overall compute time, with the formation of the observation and network inference contributing approximately equally
to the cost, and the cost of the mesh refinement process was essentially negligible. These results indicate that even
with an RL framework that was not necessarily tailored for peak computational efficiency, the computational cost of
the proposed approach did not significantly increase the overall cost of the solver for a complex system of equations.
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(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh at 𝑡 = 3𝑇 (h) Solution at 𝑡 = 4𝑇

(i) Remesh at 𝑡 = 4𝑇 (j) Solution at 𝑡 = 5𝑇 (k) Remesh at 𝑡 = 5𝑇 (l) Solution at 𝑡 = 6𝑇

(m) Remesh at 𝑡 = 6𝑇 (n) Solution at 𝑡 = 7𝑇 (o) Remesh at 𝑡 = 7𝑇 (p) Solution at 𝑡 = 8𝑇

Figure 25: Contours of density overlaid with ℎ-adapted mesh at varying remesh intervals using DynAMO for the two-
dimensional Sod shock tube problem.
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Figure 26: Computational cost distribution for the two-dimensional Sod shock tube problem in terms of unsteady solve,
observation calculation, network inference, and mesh refinement. Labels represent absolute wall clock time (CPU-seconds)
with relative cost shown in parentheses.
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6. Conclusions
In this work, we presented DynAMO, a novel reinforcement learning paradigm for guiding anticipatory mesh

refinement strategies for complex time-dependent PDEs. In comparison to standard adaptive mesh refinement ap-
proaches for time-dependent problems, which rely on instantaneous error indicators that typically cannot account for
the spatio-temporal evolution of the error, the goal of the proposed approach is to predict future error propagation
and preemptively refine the mesh to achieve superior accuracy and efficiency. To this end, we considered a multi-
agent reinforcement learning approach to a decentralized partially observable Markov decision process model of mesh
optimization, with mesh elements corresponding to independent agents that observe local surrounding information.
To maximize the generalizability and robustness of the approach, we introduced novel observation and reward func-
tions that utilized a user-adjustable error estimate normalization and a non-dimensionalized measure of information
propagation. These proposed formulations enabled the extension of the approach to arbitrary nonlinear hyperbolic
conservation laws, ensured that the approach was invariant to problem scale, mesh resolution, simulation time, and
remeshing time interval, and allowed for the user to control error/cost targets at evaluation time.

The DynAMO approach was applied to both ℎ- and 𝑝-refinement for discontinuous Galerkin approximations of the
linear advection and compressible Euler equations. We showed that due to its anticipatory refinement capability, the
proposed approach could achieve significantly higher efficiency than conventional AMR approaches, such as threshold-
based methods, yielding more accurate simulations at lower computational costs. Furthermore, the use of DynAMO
allowed for longer remesh intervals without sacrificing accuracy by producing meshes that were able to preemptively
account for the underlying dynamics of the system. These benefits were observed over a wide variety of problems,
ranging from simple linear transport to complex nonlinear shock interactions, including problems and numerical setups
on which the policies were not trained. These results indicate that the proposed approach can effectively anticipate the
spatiotemporal evolution of the error for complex nonlinear PDEs, generalize to unseen problems at evaluation time,
and robustly extend to different meshes, simulation times, and remesh time intervals.

Future developments for this approach will focus on mitigating the limitations present in its current form. In par-
ticular, this work showcases the method for one-level refinement on periodic meshes using a structured observation
window. To extend this approach to higher refinement levels, problems with boundary conditions, and arbitrary un-
structured meshes, the formulation can be modified to utilize a graph neural network as explored in the works of Yang
et al. [29] and Foucart et al. [31]. In fact, the proposed observation, which utilizes a non-dimensionalized measure
of information propagation that is dependent on the mesh displacement vector, is highly amenable to graph-type im-
plementations. Additionally, further work can be performed on exploring more complex mesh refinement techniques
such as ℎ𝑝-refinement, for which optimal strategies are far from fully understood.
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A. Euler flux Jacobian
Recall the solution and flux of the compressible Euler equations,

𝐮 =
⎡⎢⎢⎣

𝜌
𝐦
𝐸

⎤⎥⎥⎦
and 𝐅 =

⎡⎢⎢⎣

𝐦𝑇

𝐦⊗ 𝐯 + 𝑃 𝐈
(𝐸 + 𝑃 )𝐯𝑇

⎤⎥⎥⎦
=
⎡⎢⎢⎣

𝐦𝑇

𝐦⊗𝐦∕𝜌 + 𝑃 𝐈
𝐦𝑇 (𝐸 + 𝑃 )∕𝜌

⎤⎥⎥⎦
,

where 𝑃 = (𝛾 − 1)(𝐸 − 1
2‖𝐦‖2∕𝜌). The following relation is convenient to derive the flux Jacobian

𝜕𝑃
𝜕𝐮

= (𝛾 − 1)
⎡⎢⎢⎢⎣

1
2𝜌2 ‖𝐦‖2
− 1

𝜌𝐦
1

⎤⎥⎥⎥⎦
.

Let 𝐅𝑖 be the 𝑖-th column of 𝐅(𝑢). We can then calculate the flux Jacobian as

𝜕𝐅𝑖
𝜕𝐮

=
⎡⎢⎢⎢⎣

0 𝐝𝑇𝑖 0
−𝑚𝑖

𝜌2𝐦 + 1
2𝜌2 ‖𝐦‖2𝐝𝑖 1

𝜌 (𝑚𝑖𝐈 +𝐦⊗ 𝐝𝑖) − (𝛾 − 1) 1𝜌𝐝𝑖 ⊗𝐦 (𝛾 − 1)𝐝𝑖
−𝑚𝑖

𝜌2 (𝐸 + 𝑃 ) + (𝛾 − 1) 𝑚𝑖
2𝜌3 ‖𝐦‖2 1

𝜌 (𝐸 + 𝑃 )𝐝𝑇𝑖 − (𝛾 − 1)𝑚𝑖
𝜌2𝐦

𝑇 𝛾 𝑚𝑖
𝜌

⎤⎥⎥⎥⎦
,

where 𝐝𝑖 is the standard basis in ℝ𝑑 with (𝐝𝑖)𝑗 = 𝛿𝑖𝑗 and 𝑚𝑖 is the 𝑖-th component of the momentum 𝐦.

B. Sample generalization experiments
Some mesh refinement examples from the generalization experiments are presented in this section. Fig. 27 show-

cases the adapted meshes for 𝑝-refinement on the advection equation. This setup utilizes a finer mesh (with 16 times
more elements) and a longer simulation time. Fig. 28 shows the adapted meshes for ℎ-refinement on the advection
equation, with a finer mesh (with 8 times more elements), different solution profiles (multiple Gaussian bumps of
varying width and height), and a longer simulation time.
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(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh, 3𝑇 (h) Solution, 4𝑇

(i) Remesh, 4𝑇 (j) Solution, 5𝑇 (k) Remesh, 5𝑇 (l) Solution, 6𝑇

(m) Remesh, 6𝑇 (n) Solution, 7𝑇 (o) Remesh, 7𝑇 (p) Solution, 8𝑇
Figure 27: Solution contours overlaid with 𝑝-adapted mesh at varying remesh intervals for a generalization experiment
on the advection equation. Highlighted elements represent 𝑝-refinement.
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(a) Remesh at 𝑡 = 0 (b) Solution at 𝑡 = 𝑇 (c) Remesh at 𝑡 = 𝑇 (d) Solution at 𝑡 = 2𝑇

(e) Remesh at 𝑡 = 2𝑇 (f) Solution at 𝑡 = 3𝑇 (g) Remesh, 3𝑇 (h) Solution, 4𝑇

(i) Remesh, 4𝑇 (j) Solution, 5𝑇 (k) Remesh, 5𝑇 (l) Solution, 6𝑇

(m) Remesh, 6𝑇 (n) Solution, 7𝑇 (o) Remesh, 7𝑇 (p) Solution, 8𝑇
Figure 28: Solution contours overlaid with ℎ-adapted mesh at varying remesh intervals for a generalization experiment
on the advection equation.
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