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A B S T R A C T

We introduce a novel method for bounding high-order multi-dimensional polynomials in finite
element approximations. The method involves precomputing optimal piecewise-linear bounding
boxes for polynomial basis functions, which can then be used to locally bound any combination
of these basis functions. This approach can be applied to any element/basis type at any approx-
imation order, can provide local (i.e., subcell) extremum bounds to a desired level of accuracy,
and can be evaluated efficiently on-the-fly in simulations. Furthermore, we show that this ap-
proach generally yields more accurate bounds in comparison to traditional methods based on
convex hull properties (e.g., Bernstein polynomials). The efficacy of this technique is shown in
applications such as mesh validity checks and optimization for high-order curved meshes, where
positivity of the element Jacobian determinant can be ensured throughout the entire element, and
continuously bounds-preserving limiters for hyperbolic systems, which can enforce maximum
principle bounds across the entire solution polynomial.

1. Introduction
Bounding the extrema of polynomials remains an open problem in a variety of computational fields, including

numerical analysis, scientific computing, and engineering design, where polynomials frequently appear in approxi-
mations of complex physical models and geometries. For example, in computer graphics, polynomial representations
are used to visualize curves and surfaces (e.g., through Bézier curves and B-splines), where bounding their extrema
is crucial for collision detection, rendering optimization, and surface smoothness analysis. Similarly, in numerical
analysis and scientific computing, high-order polynomial approximations are used in finite element methods, where
ensuring bounded behavior is critical for stability and accuracy in simulations. Despite their importance, determining
tight bounds on polynomial extrema remains challenging, particularly in high-dimensional spaces or when dealing with
polynomials of high degree. Traditional approaches such as interval arithmetic, convex hull techniques, and sum-of-
squares optimization provide partial solutions but often suffer from computational complexity or overly conservative
bounds.

This work investigates techniques for bounding polynomial extrema of high-order finite element-type approxima-
tions, although with broader applicability to problems in computer graphics and contact mechanics. In particular, we
focus on two primary applications: i) mesh validity checks for high-order curved meshes; and ii) continuously bounds-
preserving limiters for high-order finite element approximations of hyperbolic systems. In regard to the former, mesh
validity checks are essential to ensure that high-order curved elements maintain geometric integrity, preventing issues
such as element inversion. Unlike low-order meshes, where element validity is straightforward to assess, high-order
elements introduce additional challenges due to their curved nature, which is represented by high-order polynomial
approximations in terms of an element transformation matrix. Effective bounding techniques for the determinant of
this transformation matrix help certify that these element transformations remain well-posed, which is necessary to
maintaining accuracy and stability in finite element simulations for both static and deforming meshes.

For the latter, bounds-preserving limiters are crucial for maintaining the stability and physical consistency of high-
order finite element approximations of hyperbolic systems. However, the vast majority of limiters, which enforce
bounds discretely at nodal or quadrature points, do not guarantee that the polynomial representation remains bounded
at arbitrary locations within an element. This becomes problematic in applications requiring solution evaluation at
new points, such as adaptive mesh refinement, multi-physics coupling with independent meshes/solvers, arbitrary
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Lagrangian–Eulerian methods, and overset meshes, where interpolation can introduce violations of physical constraints
and, ultimately, the failure of the solver. In these situations, it is necessary to be able to bound the continuous extrema
of these polynomial approximations, such as to ensure that interpolated quantities always retain the necessary bounds-
preserving properties.

For both of these applications, the typical approach is to use bounded basis functions in the finite element represen-
tation, namely Bernstein polynomials. The positivity and boundedness of these polynomials results in the convex hull
property of the basis, where the extrema of any polynomial are bounded by the minimum and maximum coefficients
of its Bernstein basis representation [1]. This yields a straightforward approach for mesh validity checks and bounds-
preserving limiters, where one can simply evaluate the minimum (or maximum) coefficient of the relevant Bernstein
representation to yield a lower bound on the true minimum (or maximum) of the polynomial. This approach is widely
used in the literature to validate mesh elements (see, for example, [2–8]) and continuously bounds-preserving limit-
ing (see, for example, [9–11]). Alternate approaches based on techniques such as sum-of-squares relaxation [12–14],
other bounded bases [15–17], and nonlinear optimization [18–20] also exist, although typically with higher algorithm
complexity and sometimes without strict guarantees on boundedness.

However, the standard methods based on Bernstein representations suffer from two distinct drawbacks, the first
being that the transformation from various polynomial representations (e.g., nodal interpolatory bases) to Bernstein
polynomials can be ill-conditioned and cause numerical difficulties. More importantly, the bounds one yields from
the evaluating the Bernstein coefficients are often “loose” in the sense that the bound and the true extrema can differ
drastically, and it is very common, for example, to have negative Bernstein basis coefficients even when a polynomial
is strictly positive. As such, it is often necessary to subdivide/refine the elements in question a number of times to yield
an acceptable level of accuracy in the bounds. This issue is further compounded by the fact that the Bernstein basis
is not nodal and its coefficients do not yield any information about the locality of any extrema (i.e., it is not possible
to narrow down the location of the extrema within an element without further numerical effort). Consequently, while
Bernstein-based approaches provide a systematic means of obtaining bounds, their practical utility is often limited by
the conservativeness of these bounds and the computational difficulties associated with obtaining them.

In this work, we introduce a novel approach to computing bounds of high-order polynomials stemming from finite
element approximations. Broadly inspired by the technique introduced in Mittal et al. [21] for general field evaluation
in high-order finite element methods, we propose a constrained optimization approach to precompute piecewise linear
bounding boxes for the finite element basis functions. These bounding boxes can then be linearly combined to locally
bound the extrema of any polynomial that can be recovered from a combination of these basis functions, the accuracy of
which can be furthered improved by a simple basis transformation. The proposed approach can be applied to any basis
functions/elements, can bound extrema to any desired level of accuracy, and can be efficiently evaluated on-the-fly. We
show the applicability of this approach in mesh validity checks and mesh optimization for high-order curved meshes
and continuously bounds-preserving limiting for high-order finite element approximations of hyperbolic systems.

The remainder of this manuscript is organized as follows. In Section 2, we introduce the technique for form-
ing bounding boxes, the optimization process for computing optimal bounding boxes for the basis functions, and an
overview of the applications of such approaches to mesh validity checks and bounds-preserving limiting. The results
of numerical experiments for these applications are then shown in Section 3, followed by conclusions in Section 4.

2. Methodology
Consider a polynomial approximation on the closed subdomain Ω of the form

𝑢ℎ(𝐱) =
𝑁∑
𝑖=1

𝑢𝑖𝜙𝑖(𝐱) ⊂ 𝑉ℎ, 𝐱 ∈ Ω, (1)

where 𝜙𝑖(𝐱) are a set of 𝑁 basis functions of maximal order 𝑝, 𝑢𝑖 are their associated basis coefficients, and 𝑉ℎ is the
polynomial space spanned by the basis functions. We use the notation ℙ𝑝 to denote a polynomial space of maximal
order 𝑝. This form is commonplace in finite element approximations of partial differential equations, where the subdo-
main Ω is an arbitrary element within an arbitrary mesh and 𝑢ℎ(𝐱) approximates some solution within that element. In
the one-dimensional case, we take Ω = [−1, 1] and let 𝜙𝑖(𝐱) represent finite element basis functions of order 𝑝 = 𝑁−1
with 𝑢𝑖 as the corresponding degrees of freedom. We do not impose any constraints on the type of basis functions used
(i.e., they can be nodal or modal). The goal of this work is to find an efficient technique for bounding the extrema of
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the high-order polynomial 𝑢ℎ(𝐱) in the form of

𝑢min ≤ 𝑢ℎ(𝐱) ≤ 𝑢max ∀ 𝐱 ∈ Ω, (2)

with the accuracy of the bounding method dictated by the “tightness” of the bounds with respect to the true extrema,
computed as ||||𝑢min − min

𝐱∈Ω
𝑢(𝐱)

|||| and
||||𝑢max − max

𝐱∈Ω
𝑢(𝐱)

|||| . (3)

For brevity, we neglect the notation ∀ 𝐱 ∈ Ω from this point onwards, but it should be understood that the formulations
to be presented all operate within some arbitrary element Ω.

The overarching techniques in this work broadly rely on modifications of the approach introduced in Mittal et al.
[21] for general field evaluation in high-order finite element methods. We present here a brief overview of the approach.
Let 𝜼 ∈ Ω be some set of 𝑀 control nodes and 𝐪 be the associated control values of these nodes. For the moment,
we assume that the nodes 𝜼 are fixed arbitrarily and consider their optimal positioning later. We define 𝐿𝜼,𝐪(𝐱) and
𝑈𝜼,𝐪(𝐱) as 𝐶0 interpolation functions that linearly interpolate between the control node/value pairs in {𝜼,𝐪}. It can be
easily seen that if sets of control values 𝐪− and 𝐪+ are found such that

𝐿𝜼,𝐪− (𝐱) ≤ 𝑢ℎ(𝐱) ≤ 𝑈𝜼,𝐪+ (𝐱), (4)

then 𝑢max = max𝐪+ and 𝑢min = min𝐪− are upper and lower bounds on 𝑢ℎ(𝐱), respectively. An example visualization of
this is shown in Fig. 1. However, finding a set of control nodes/values which guarantees that Eq. (4) is satisfied is non-
trivial for arbitrary high-order polynomials and generally requires the solution of a nonlinear optimization problem.
For practical applications, it is not feasible to compute these values on-the-fly for arbitrary polynomials, and a more
sophisticated approach is required.
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Figure 1: Example of 𝐶0 upper/lower linear bounding functions for an arbitrary polynomial 𝑢ℎ(𝑥) defined by control nodes
𝜼 and control values 𝐪.

The proposed method in this work relies on two main components. The first component exploits the linearity of
the polynomial 𝑢ℎ(𝐱) with respect to the basis functions 𝜙(𝐱) which are fixed. Therefore, for each basis function 𝜙𝑖(𝐱),
if one precomputes the respective upper/lower control values 𝐪𝑖+ and 𝐪𝑖− such that

𝐿𝑖(𝐱) ≤ 𝜙𝑖(𝐱) ≤ 𝑈 𝑖(𝐱), (5)

where we use the shorthand notation 𝐿𝑖(𝐱) = 𝐿𝜼,𝐪𝑖− (𝐱) and 𝑈 𝑖(𝐱) = 𝑈𝜼,𝐪𝑖+ (𝐱), then one can directly compute linear
bounding functions for an arbitrary 𝑢ℎ(𝐱) as

𝐿(𝐱) =
𝑁∑
𝑖=1

min
(
𝑢𝑖𝐿

𝑖(𝐱), 𝑢𝑖𝑈 𝑖(𝐱)
)
≤ 𝑢ℎ(𝐱), (6a)
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𝑈 (𝐱) =
𝑁∑
𝑖=1

max
(
𝑢𝑖𝐿

𝑖(𝐱), 𝑢𝑖𝑈 𝑖(𝐱)
)
≥ 𝑢ℎ(𝐱). (6b)

Here, we use the property that

𝑢𝑖𝐿
𝑖(𝐱) ≤ 𝑢𝑖𝜙𝑖(𝐱) ≤ 𝑢𝑖𝑈

𝑖(𝐱), if 𝑢𝑖 > 0 (7a)
𝑢𝑖𝑈

𝑖(𝐱) ≤ 𝑢𝑖𝜙𝑖(𝐱) ≤ 𝑢𝑖𝐿
𝑖(𝐱), if 𝑢𝑖 < 0. (7b)

The control nodes values for these bounding functions, which can be simply computed by summing the respective
minima/maxima of the control nodes values for each basis function multiplied by their basis coefficients, yield an
algorithmically straightforward approach to computing bounds for an arbitrary polynomial 𝑢ℎ(𝐱) at each control node
𝜂𝑗 as

𝐿(𝜂𝑗) =
𝑁∑
𝑗=1

min(𝑢𝑖𝑞−𝑖𝑗 , 𝑢𝑖𝑞
+
𝑖𝑗), (8a)

𝑈 (𝜂𝑗) =
𝑁∑
𝑗=1

max(𝑢𝑖𝑞−𝑖𝑗 , 𝑢𝑖𝑞
+
𝑖𝑗). (8b)

We use the notation here that 𝑞𝑖𝑗 is the value at the control node 𝜂𝑗 for the basis function 𝜙𝑖.
However, a naive implementation of the above method results in bounds that are relatively loose. The second

component of the proposed method relies on a transformation of the polynomial 𝑢ℎ(𝐱), which helps to tighten these
bounds. As the tightness of the bounds is related to the magnitude of the coefficients 𝑢𝑖, we consider a transformation
of the form

𝑢ℎ(𝐱) =
𝑁∑
𝑖=1

𝑢𝑖𝜙𝑖(𝐱) = 𝑢𝐿𝑂(𝐱) +
𝑁∑
𝑖=1

𝑢′𝑖𝜙𝑖(𝐱), (9)

where we separate 𝑢ℎ(𝐱) into a low-order, linear portion (𝑢𝐿𝑂(𝐱)) and a high-order portion (𝑢′ℎ(𝐱)), the latter for which
we use the shorthand notation 𝑢′ℎ(𝐱) =

∑𝑁
𝑖=1 𝑢

′
𝑖𝜙𝑖(𝐱). The idea here is to choose the linear portion such that the high-

order fluctuations 𝑢′ℎ(𝐱) are relatively “small”. The method then attempts to bound the high-order fluctuations 𝑢′ℎ(𝐱)
instead and superimpose them on the bounds of 𝑢𝐿𝑂(𝐱), which can be exactly computed trivially as

𝐿(𝜂𝑗) = 𝑢𝐿𝑂(𝜂𝑗) + 𝐿′(𝜂𝑗) = 𝑢𝐿𝑂(𝜂𝑗) +
𝑁∑
𝑖=1

min
(
𝑢
′
𝑖𝑞

−
𝑖𝑗 , 𝑢

′
𝑖𝑞

+
𝑖𝑗

)
, (10a)

𝑈 (𝜂𝑗) = 𝑢𝐿𝑂(𝜂𝑗) + 𝑈 ′(𝜂𝑗) = 𝑢𝐿𝑂(𝜂𝑗) +
𝑁∑
𝑖=1

max
(
𝑢
′
𝑖𝑞

−
𝑖𝑗 , 𝑢

′
𝑖𝑞

+
𝑖𝑗

)
. (10b)

Per Mittal et al. [21] and [22], in the one-dimensional case, the linear portion can be represented as 𝑢𝐿𝑂(𝑥) =
𝑎0 + 𝑎1𝑥 (i.e., the equivalent ℙ1 basis for the given element type). The coefficients 𝑎0 and 𝑎1 are calculated from
the 𝐿2 projection of the polynomial 𝑢ℎ(𝐱) onto the ℙ1 subspace, which correspond to the zeroth/first-order modal
coefficients for an orthogonal basis computed with respect to the unit measure (e.g., Legendre basis coefficients for
tensor-product elements):

𝑎0 =
1
2 ∫Ω

𝑢ℎ(𝑥) d𝑥, (11a)

𝑎1 =
3
2 ∫Ω

𝑥𝑢ℎ(𝑥) d𝑥. (11b)

A visualization of how the 𝐿2 projection to ℙ1 compacts the bounds is presented in Fig. 2. The initially loose bounds
on a high-order polynomial (𝐿(𝑥) ≤ 𝑢ℎ(𝑥) ≤ 𝑈 (𝑥)) are converted into a linear component (𝑢𝐿𝑂(𝑥) = 𝑎0 + 𝑎1𝑥) and
tight bounds on the high-order fluctuations of the polynomial (𝐿′(𝑥) ≤ 𝑢′ℎ(𝑥) ≤ 𝑈 ′(𝑥)). This modification also gives
the benefit of ensuring that the bounding approach is invariant to shifts/linear scalings of the polynomial. Extensions
to higher dimensions follow the same approach, although for elements with tensor-product structures, a more efficient
method can be obtained by decomposing the problem into a series of one-dimensional problems (see Appendix A).
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Figure 2: Example of the bounding approach directly applied to a high-order polynomial (left), a visualization of the
projection step (middle), and the bounding approach with the projection step (right).

2.1. Calculating bounding boxes
The above approach requires calculating a set of control nodes/value pairs {𝜼,𝐪} to create a bounding box for

each basis function. In Mittal et al. [21], this was approximated by using the values and gradients of the 𝑁 basis
functions (in this case, the nodal interpolating basis functions at the Gauss–Lobatto nodes) at 𝑀 Chebyshev nodes.
This approach, however, is heuristic-based, and the bounding property in Eq. (4) is only shown empirically for certain
values of 𝑀 > 𝑁 , with the minimum necessary resolution dependent on the choice of control nodes. One of the
novelties of this work is to present an approach to precompute the bounding functions 𝐿𝑖(𝐱) and 𝑈 𝑖(𝐱) which: i) can
be applied to any basis function 𝜙𝑖(𝐱); ii) can be applied to any set of control nodes 𝜙𝑖(𝐱); and iii) are guaranteed to
bound the basis functions (i.e., satisfy Eq. (4)) for any number of control nodes 𝑀 ≥ 2. This results in a provably
robust approach to bound extrema of arbitrary polynomial approximations in finite element methods. We present this
first in terms of an arbitrary set of control nodes 𝜼 and later discuss how these control nodes can be selected.

The task of finding a linear bounding function that “tightly” bounds a basis function can be framed as a constrained
optimization problem. For a given set of control nodes 𝜼 and basis function 𝜙𝑖(𝐱), we seek to find the solution of the
optimization problem

𝐪∗ = argmin
𝐪

𝑓 (𝐪) 𝑠.𝑡. 𝑔(𝐪, 𝐱) ≥ 0, (12)

where

𝑓 (𝐪) = ‖‖‖𝑈
𝑖
𝜼,𝐪(𝐱) − 𝜙𝑖(𝐱)

‖‖‖2,Ω , (13a)

𝑔(𝐪, 𝐱) = 𝑈 𝑖
𝜼,𝐪(𝐱) − 𝜙𝑖(𝐱). (13b)

Note that the constraint functional is framed in terms of an upper bounding function, but an identical formulation can
be made for the lower bounding function by negating the inequality of the constraint functional. One can even take
this a step further and try to find an optimal set of 𝑀 control nodes 𝜼 over a set of 𝑁 given basis functions as

{𝜼∗,𝐪∗} = argmin
{𝜼,𝐪}

𝑓 (𝜼,𝐪) 𝑠.𝑡. 𝑔𝑖(𝜼,𝐪, 𝐱) ≥ 0, (14)

for all 𝑖 in {1,… ,𝑀}, where

𝑓 (𝜼,𝐪) =
𝑀∑
𝑖=1

‖‖‖𝑈
𝑖
𝜼,𝐪(𝐱) − 𝜙𝑖(𝐱)

‖‖‖2,Ω , (15a)

𝑔𝑖(𝐪, 𝐱) = 𝑈 𝑖
𝜼,𝐪(𝐱) − 𝜙𝑖(𝐱). (15b)

We refer to the solution of the former as the optimal bounds for a given set of points and the latter as the optimal bounds
on the optimal points. The optimization process and implementation is further described in Section 2.4.
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This proposed approach has the benefit that the bounding properties and optimality of the bounding functions are
independent of the choice of basis functions and control points. Unlike the original approach of Mittal et al. [21],
the bounding functions are guaranteed to bound any basis function for any value of 𝑀 > 1 (per dimension), and
the bounds are optimal in the sense that they minimize the 𝐿2 norm of the bounding error. We showcase examples
of these computed bounding functions for various bases, including Gauss–Lobatto, Gauss–Legendre, and Bernstein
bases, in Fig. 3. As this optimization process only needs to be performed once given a basis function and a desired
number of control nodes 𝑀 , the control nodes/values for a variety of bases can be precomputed and stored for future
simulations. Therefore, the actual cost of the bounding technique during simulations for general elements is simply
(𝑁𝑀) operations (for computing the summations in Eq. (6)) for one-dimensional functions. For higher-dimensional
functions with tensor-product structures, the problem can be treated as a sequence of one-dimensional problems, which
is further explained in Appendix A. For the numerical results in this work, we present 𝑁 and 𝑀 in terms of the one-
dimensional values for clarity.

Compared to some approaches that rely on convex hull-type properties for bounding polynomials (i.e., Bernstein
polynomial representations), the proposed bounding technique has the benefit of giving localized bounds in terms
of the values at the control nodes, which allows for refined estimates of local extrema. In contrast, other bounding
approaches in the literature often can only provide bounds for the entire element, which we refer to as global bounds.
From this, one can increase the resolution to control the accuracy of the bounds, generally dictated by some desired
tolerance level between the local lower and upper bounds. One such approach is to increase the number of control
nodes 𝑀 – it will later be shown that the bounding error is second-order with respect to 𝑀 . This allows for the user to
obtain initially very loose bounds (e.g., using 𝑀 = 2) and then increase resolution as necessary. Alternatively, if one
wishes to further refine the bounds in a particular subregion of the element, a common technique is to subdivide the
element into sub-elements (similarly to adaptive mesh refinement) and apply the bounding technique to the particular
sub-element. Compared to simply increasing 𝑀 , this provides the benefit of completely localizing any refinements in
the bounds estimates, although at the expense of more algorithmically intensive operations such as interpolation onto
the sub-element and recalculation of the bounds. We note here that compared to global bounds estimates (such as taking
the minimum/maximum Bernstein coefficients over the element), the local nature of the proposed bounding approach
allows one to essentially skip one level of refinement at the beginning and immediately refine a desired sub-element
between control nodes instead of the entire element. We show a visualization of these two refinement approaches in
Fig. 4 and show examples of both in the numerical experiments.

While the focus of the numerical experiments in this work is on tensor-product elements, the presented formulation
for optimizing the bounding boxes and computing the bounds is applicable to any element type. We showcase an
example of the identical formulation applied to bounding a high-order polynomial on a triangle element on a fixed set
of equispaced control nodes in Fig. 5, where we optimize Eq. (13) now with respect to the two-dimensional nodal basis
functions on the reference triangle. While this optimization is straightforward for a given set of control nodes (albeit at
a notably larger computational cost due to the increased dimensionality), the process of computing the optimal control
nodes becomes much more difficult. For tensor-product elements, one can simply compute the higher-dimensional
bounding boxes as tensor-products of the one-dimensional bounding boxes, and enforcing symmetry on the control
node distribution and bounding boxes is straightforward. For non-tensor product elements, the two main complications
that arise are: i) one must choose how to tessellate between an arbitrary set of nodes (the optimality of which is an open
problem); and ii) constraining the node distributions within the element and enforcing symmetry in the control node
distribution is notably more complicated (e.g., symmetry orbits used for quadrature rules can offer some insights [23]).
As such, we leave the topic of bounding extrema for simplex elements as a topic of future work.

2.2. Application to mesh validity checks
The bounding of polynomial extrema is of interest to problems in meshing, particularly for high-order/curved

meshes which deform nonlinearly. In these applications, elements are often represented in terms of a mapping 𝐉 ∶
𝝃 → 𝐱 which transforms the element from a reference space 𝝃 to the physical space 𝐱. The entries of this Jacobian
transformation matrix 𝐉, given as

𝐽𝑖𝑗 =
𝜕𝐱𝑖(𝝃)
𝜕𝝃𝑗

, (16)

are typically polynomial functions of the reference coordinates 𝝃, and their extrema determine element validity and
mesh quality. In particular, the local volume of the element can be inferred from the determinant of the Jacobian
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(a) Gauss–Lobatto basis
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(b) Gauss–Legendre basis
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(c) Bernstein basis

Figure 3: Examples of optimal bounding boxes for 𝑁 = 4 Gauss–Lobatto (left), Gauss–Legendre (middle), and Bernstein
(right) basis functions with 𝑀 = 5 equispaced control nodes.

|𝐉|, and the validity of the element is conditional on the positivity of this determinant across the entire element (i.e.,
|𝐉| > 0 ∀ 𝐱 if the element is not inverted).

For linear simplex elements, this can be verified by simply computing the determinant at the mesh nodes. For
higher-order meshes, this cannot be verified in the same manner as the positivity of the determinant at mesh nodes
does not imply positivity throughout the entire element, which can cause non-valid elements with regions of negative
volume/inversion [24–26]. Alternatively, one can use Bernstein bases for determinant [2–5], for which validity can be
guaranteed if the minimum basis coefficient is positive, but this approach is suboptimal as it can be computationally
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(a) Base resolution (b) Increased number of control points (c) Increased subdivision levels

Figure 4: Example of an upper bounding surface for a high-order two-dimensional polynomial at some base level of
resolution (left), increased resolution through an increased number of control points 𝑀 (middle), and increased resolution
through subdivision (right).

Figure 5: Example of an upper bounding surface for a high-order two-dimensional polynomial on a triangular element with
equispaced control nodes.

expensive and the bounds are relatively loose (i.e., it is quite common to have the minimum basis coefficient be negative
even when an element is valid ). As such, one application of the proposed technique is in checking the validity of high-
order/curved meshes. In particular, we can represent the determinant of the Jacobian as a polynomial in the reference
domain, and it is simple to verify that if a 𝑑-dimensional mesh is of order 𝑝 (i.e., the maximal order of 𝐽𝑖𝑗 is of order
𝑝), then the maximal order of |𝐉|(𝜉) is 𝑑𝑝 − 1 for tensor-product elements and 𝑑(𝑝 − 1) for simplices [5]. Therefore,
we can simply treat |𝐉|(𝜉) as a “solution” polynomial of that order and apply the proposed bounding technique.

In particular, if the minimum bound for |𝐉|(𝜉) is positive at all control nodes, then we can guarantee that the
element is valid. Furthermore, if the maximum bound for |𝐉|(𝜉) is negative at any control node, we can guarantee that
the element is invalid. If the maximum bound is positive but the minimum bound is negative at the same control node,
then the element may or may not be valid. In this scenario, we can increase the resolution, either through subdividing
the element in the region or through increasing the number of control nodes, until one of the above conditions is reached
or the difference between the local minimum and maximum bound has reached some acceptable tolerance. In case of
the latter, it is common to treat the element as invalid as the minimum determinant in this case is very close to zero.

2.3. Application to bounds-preserving limiters
Another application for where finding a bound for the extrema of polynomials is of interest is in developing bounds-

preserving limiters for high-order finite element methods, particularly for hyperbolic conservation laws. In these sys-
tems, it is often necessary for the solution to reside within some set of bounds 𝑢min ≤ 𝑢ℎ(𝐱) ≤ 𝑢max (e.g., local
maximum principle for linear transport, positivity of density in gas dynamics, etc.), which is typically enforced by
applying some sort of limiting to the solution. However, applying limiting at discrete nodal points is problematic in
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applications requiring solution evaluation at new points, such as adaptive mesh refinement, multi-physics coupling
with independent meshes/solvers, arbitrary Lagrangian–Eulerian methods, and overset meshes. Here, it is necessary
for the solution to abide by these bounds across the entire solution polynomial, which is typically accomplished through
limiting on Bernstein representations [9–11] or nonlinear optimization-based approaches [18, 19].

Given that the proposed approach can yield guaranteed bounds on the high-order solution, these bounds can also
be directly used to construct continuously bounds-preserving limiting approaches. In particular, we consider a discon-
tinuous Galerkin (DG)-type approximation [27] of hyperbolic conservation laws of the form

𝜕𝑡𝑢 + 𝑐⋅∇𝑢 = 0, (17)

where 𝑐 is some constant advection velocity. For DG approximations of these conservation laws, it has been shown
that the element-wise mean, defined as for an arbitrary element Ω as

𝑢 =
∫Ω 𝑢 d𝐱
∫Ω d𝐱

, (18)

preserves maximum principle bounds of the form

𝑎 ≤ 𝑢(𝐱, 𝑡 + Δ𝑡) ≤ 𝑏, 𝑎 = min
𝐱

𝑢(𝐱, 𝑡), 𝑏 = max
𝐱

𝑢(𝐱, 𝑡), (19)

under some relatively minor assumptions on the numerical scheme and time step Δ𝑡 (for further details, we refer the
reader to a series of works originating from Zhang and Shu [28]). Therefore, we can compute a limited solution 𝑢ℎ(𝐱)
using the squeeze-type limiter of Zhang and Shu [28] by blending the high-order solution 𝑢ℎ(𝐱) within an element Ω
with its element-wise mean 𝑢 as

𝑢ℎ(𝐱) = 𝛼𝑢ℎ(𝐱) + (1 − 𝛼)𝑢, (20)

where 𝛼 ∈ [0, 1] is some element-wise constant convex blending coefficient.
It can easily be shown that if 𝛼 is computed as

𝛼 = min
[
1, 𝑎 − 𝑢

𝑢min − 𝑢
, 𝑏 − 𝑢
𝑢max − 𝑢

]
(21)

and 𝑢min and 𝑢max bound the minimum and maximum of 𝑢ℎ(𝐱) within the element (i.e., 𝑢min ≤ 𝑢ℎ(𝐱) ≤ 𝑢max ∀ 𝐱 ∈ Ω),
then the limited solution will preserve bounds across the entire element (i.e., 𝑎 ≤ 𝑢ℎ(𝐱) ≤ 𝑏 ∀ 𝐱 ∈ Ω). As such, we
propose to use the presented bounding technique to compute 𝑢min and 𝑢max. Note here that while we focus on squeeze-
type limiters for the linear transport equation for the purposes of this work, the methods to be presented can be applied
to different limiting techniques and conservation laws which simply require bounds for the extrema of the solution.

2.4. Optimization process
The optimization process relies on solving a constrained optimization problem for computing the optimal bounding

functions. We start first with the simpler example of computing the bounding functions for a fixed set of control nodes
𝜼. For brevity, we present this with respect to an upper bounding function, represented by its control values 𝐪, for an
arbitrary basis function 𝜙(𝐱). The problem of just checking the constraint 𝑔(𝐪, 𝐱) in Eq. (13) is an optimization problem
in itself, requiring calculating the minimum of a high-order polynomial which can be computationally expensive to
compute many times. Therefore, consider instead a discrete version of the constraint, where we check the constraint
at a set of 𝑛 equispaced sampling points as

𝑔(𝐪, 𝐱𝑖) ≥ 0 ∀ 𝑖 ∈ {1,… , 𝑛}. (22)

If we choose 𝑛 to be large, the discrete formulation quickly converges to the continuous formulation. Therefore,
we can apply the optimization process to the much simpler discrete objective function

𝑓 (𝐪) ≈

√√√√1
𝑛

𝑛∑
𝑖=1

(
𝐿𝜼,𝐪(𝐱𝑖) − 𝜙(𝐱𝑖)

)2 + (
𝑈𝜼,𝐪(𝐱𝑖) − 𝜙(𝐱𝑖)

)2 (23)
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with the above discrete constraints to obtain a candidate solution 𝐪′. We assume here that 𝑛 is chosen sufficiently large
such that the exact solution 𝐪∗ does not differ much from the candidate solution. However, this does not ensure that
the candidate solution actually satisfies the continuous constraint in Eq. (13) since the basis function may exceed the
bounds outside of the sampling nodes. Therefore, we offset the control node values to account for this as

𝐪∗ = 𝐪′ + Δ𝐪 + 𝜖, (24)

where
Δ𝐪 = −min

𝐱

(
0, 𝐿𝜼,𝐪′ (𝐱) − 𝜙(𝐱)

)
= −min

𝐱
(0, 𝑔(𝐪′, 𝐱)) (25)

is the maximum amount the continuous formulation violates the constraint functional and 𝜖 = 10−6 is a small numerical
tolerance. With this approach, the discrete formulation can be optimized over many sampling points relatively quickly
while the problem of calculating the minimum of a high-order polynomial is required only once at the end. This greatly
reduces the computational complexity of the problem, and the differences in the end results are essentially negligible
for large 𝑛 (in our case, 𝑛 = 1000). We perform this constrained optimization using the sequential least-squares
quadratic programming (SLSQP) algorithm in the SciPy package. Furthermore, symmetry in the bounding boxes
with respect to symmetric basis functions was enforced by optimizing on one “side” and reflecting the boxes, and, for
higher-dimensional bases, we compute the bounding boxes as tensor-products of the one-dimensional bounding boxes.

The optimization problem for finding the optimal control nodes is significantly more complex, with each step of
this optimization process requiring computing the bounding boxes for a fixed set of nodes as above. In addition to
the increased computational cost, the distribution of the nodes themselves have constraints which must be enforced,
namely that they must be symmetric about the origin, must have nodes on the endpoints 𝑥 = ±1, and must be bounded
by the element domain Ω = [−1, 1] and distributed in increasing order. The first two are simple to enforce by ensuring
only some nodes are free to move – for example, only nodes on the left side (excluding the endpoint and midpoint if
applicable) are part of the optimization process while the right side is taken as a reflection of the left. For the last part,
this can be imposed by a further set of constraints on the optimizer (e.g., 𝑞𝑖+1 − 𝑞𝑖 ≥ 0, 𝑞𝑖 + 1 ≥ 0, 1 − 𝑞𝑖 ≥ 0), but we
found that with this many constraints, optimizers often struggled to converge to the optimal solution.

Instead, we convert a (subset of) this constrained optimization problem into an unconstrained optimization problem
via an auxiliary variable-type approach. We optimize instead for a set of 𝑀 − 1 auxiliary variables 𝐳, which are
unbounded, and transform them to the control nodes as

𝑞𝑖 = −1 + 2
∑𝑖

𝑗=1 exp(𝑧𝑗)∑𝑀−1
𝑗=1 exp(𝑧𝑗)

. (26)

As it can be seen, this guarantees that 𝑞𝑖+1 > 𝑞𝑖, min𝐪 = −1, max𝐪 = 1, and −1 ≤ 𝑞𝑖 ≤ 1 without imposing
any further constraints on the optimizer at the expense of one additional variable. Note that the symmetry arguments
from before can also be applied here to reduce the number of variables that need to be optimized over. We similarly
perform this optimization using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with basin-hopping in the
SciPy package, with the above SLSQP optimizer for the inner optimization steps for computing the bounding boxes
for the current set of control nodes. The implementation of this optimization process is included as Python code in
the electronic supplementary material, and some tabulated examples of the bounding box control nodes/values are
presented in Appendix B.

2.5. Overview
We present here a brief overview of the approach as applied to computing bounds on a high-order polynomial

solution within an element. We assume here the optimal bounding boxes for the chosen basis functions have been
precomputed as per Section 2.4 and stored for loading. Then, for each element:

1. Load two tables of 𝑁 ×𝑀 entries for the given basis, consisting of 𝑁 basis functions and 𝑀 optimal control
node values. Denote 𝑞𝑖𝑗− /𝑞𝑖𝑗+ as the lower/upper control node values for basis function 𝜙𝑖 and control node 𝜂𝑗 .

2. Compute projection coefficients (from Eq. (11)) via quadrature. Subtract linear basis 𝑢𝐿𝑂(𝐱) from solution 𝑢ℎ(𝐱)
to compute high-order fluctuations 𝑢′ℎ(𝐱).

3. Loop over control nodes 1 ≤ 𝑖 ≤ 𝑀 :
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(a) Compute fluctuation bounds at control node:

𝑢′min,𝑖 =
𝑁∑
𝑖=1

min(𝑢′𝑖𝑞
𝑖𝑗
− , 𝑢

′
𝑖𝑞

𝑖𝑗
+ ) and 𝑢′max,𝑖 =

𝑁∑
𝑖=1

max(𝑢′𝑖𝑞
𝑖𝑗
− , 𝑢

′
𝑖𝑞

𝑖𝑗
+ ).

(b) Compute solution bounds at control node: 𝑢min,𝑖 = 𝑢′min,𝑖 + 𝑢𝐿𝑂(𝐱𝑖) and 𝑢max,𝑖 = 𝑢′max,𝑖 + 𝑢𝐿𝑂(𝐱𝑖)
4. If desired (for increased accuracy), increase 𝑀 and repeat or interpolate solution onto sub-element and repeat.

3. Results
We first look at the efficacy of the proposed approach in terms of bounding the basis functions themselves for a

finite element approximation with 𝑁 solution nodes and 𝑀 control nodes. The finite element basis functions were
taken as the 𝑁 − 1 nodal interpolating functions on the 𝑁 Gauss–Lobatto nodes for a one-dimensional element. For
each 𝑁 , the error was computed with respect to the optimized bounding boxes computed with 𝑀 control nodes placed
on the Gauss–Legendre nodes (consisting of the 𝑀 −2 Gauss-Legendre nodes and the endpoints), the Gauss–Lobatto
nodes, the Chebyshev nodes, equispaced nodes, and optimized nodes as proposed in Section 2.1. The error, denoted
by 𝜀2, was computed with respect to the sum of the 𝐿2 norm of the bounding box errors (i.e., 𝜀2 = 𝑓 (𝜼,𝐪) in Eq. (15)).
The errors at varying values of 𝑁 and 𝑀 are shown in Fig. 6 for the different control node points. It can be seen that,
as expected, the optimized nodes result in the lowest average error. At low 𝑁 , the equispaced nodes were typically
the second-best control node set, with 𝑁 = 3 showing essentially identical error between the equispaced nodes and
optimized nodes. However, as 𝑁 increased, the equispaced node set quickly became suboptimal, and the performance
of the Gauss–Lobatto node set was closer to the optimal nodes, followed by the Chebyshev and Gauss–Legendre nodes.
For all node sets, the error behaved approximately as (𝑀−2), indicating second-order convergence with respect to
average control node spacing which is consistent with the property that a piecewise linear interpolant of a smooth
function converges with second-order accuracy in the 𝐿2 norm. We note here that the error between the best and worst
performing node sets typically only differed by a factor of 2-3.

3.1. High-order mesh validity checks
The proposed approach was then applied to check the validity (i.e., the positivity of the determinant of the ele-

ment transformation Jacobian) of high-order curved meshes. We focus here on tensor-product elements, specifically
quadrilateral elements, but the general techniques presented in this work can extend to any element type. For all of the
numerical experiments, we use the modular open-source C++ FEM library MFEM [29, 30], and some of the methods
presented are available as examples in the MFEM package. As a first example, we consider the test of simply bounding
min(|𝐽 |) within a second-order quadrilateral element (i.e., ℙ2 in maximal order), for which the Jacobian determinant
is ℙ3 in maximal order (i.e., 𝑁 = 4 in each dimension). The transformation was chosen such that the element was
inverted in a small region, with min(|𝐽 |) = −0.0002156. The minimum bound with respect to number of subdivision
levels is shown in Fig. 7 as computed by the proposed approach (with 𝑀 = 𝑁 , 𝑁 + 1, and 𝑁 + 2) and the Bernstein
approach. It can be seen that the proposed approach yields much tighter bounds for the minimum determinant than the
Bernstein approach, with around an order of magnitude improvement. As expected, 𝑀 = 𝑁 + 2 yielded the tightest
bounds, requiring only 2 subdivisions to reach a tolerance of 10−4 between the minimum/maximum bound, whereas
the Bernstein approach required 6. With 𝑀 = 𝑁 and 𝑀 = 𝑁 + 1, 4 and 3 subdivision levels were required, respec-
tively, which was still a significant improvement over the Bernstein approach. We remark here that one of the benefits
of the proposed approach is that the bounds are local, such that the initial subdivision can be performed only on the
subcell (i.e., the region between control nodes) where the bounds exceed the tolerances, instead of across the entire
element which is typical of standard Bernstein-type approaches.

We further showcase the proposed approach in the context of mesh validity checks in Lagrangian hydrodynamics.
Here, the formation of non-physical elements (e.g., inverted elements) due to large deformations in high-speed flow
regimes can degrade solver convergence and cause issues with solution interpolation for adaptive mesh refinement and
multi-physics solvers. As such, effective techniques for ensuring the positivity of the Jacobian determinant of mesh
elements can be highly beneficial in these applications, and methods which can better bound the determinant (from
below) prevent the spurious flagging of valid elements which can degrade performance and accuracy. We study the
mesh from a Lagrangian hydrodynamics simulation of the triple-point problem of Kucharik et al. [31] as computed
with the Laghos solver [32] to evaluate the proposed approach in terms of estimating the mesh Jacobian determinant.
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Figure 6: Average 𝐿2 error of the bounding boxes for the 𝑁 − 1 order Gauss–Lobatto nodal interpolating basis functions
as a function of the control node placements and number of control nodes 𝑀 .
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Figure 7: Estimate of the minimum determinant of the element transformation Jacobian with respect to subdivision levels
for a second-order quadrilateral element as computed with the proposed approach and the Bernstein approach.

The minimum mesh Jacobian determinant in each element is shown in Fig. 8 as computed by an exact (brute force
sampling) approach, the proposed bounding approach, and a Bernstein-type approach. It can be seen that the results
of the proposed approach better represent the true minimum determinants in the mesh compared to the Bernstein
approach, particularly so in the highly distorted region around the material interfaces where the nonlinear terms in
the determinant representation are strongest. This is most evident in the error diagrams, where the proposed approach
yielded maximum errors that were 1-2 orders of magnitude lower than the Bernstein approach, with relative errors on
the order of only a few percent.
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(a) Exact (brute force)

(b) Proposed approach (c) Bernstein approach

(d) Error with proposed approach (e) Error with Bernstein approach

Figure 8: Mesh obtained from a Lagrangian hydrodynamics simulation of the triple-point shock interaction problem.
Element-wise minimum mesh Jacobian determinant shown as computed by a brute force approach (top), proposed approach
(middle left), and Bernstein approach (middle right). Errors for the proposed and Bernstein approaches shown on bottom
row.

As a final demonstration of the proposed approach in validating high-order meshes, we implement this approach
within an 𝑟-adaptive mesh optimization framework to ensure mesh validity during optimization. Our mesh optimization
framework is based on the Target Matrix Optimization Paradigm (TMOP) [24], where node movement is driven by
variational minimization of a functional that depends on the current and target Jacobian of the transformation of each
mesh element. In standard practice [24, 26], the validity of mesh elements is checked at a set of quadrature points
through a line-search procedure. Specifically, if the node displacement determined by the mesh optimization iteration
results in an invalid mesh at any of the quadrature points, it is iteratively scaled down until the resulting mesh is valid.
However, this results in a similar problem as with the previous example, where element validity can only be checked
at discrete points which may cause solver divergence if the quadrature points used in the simulation change. With
the proposed approach, this validity can be checked for the whole element, which guarantees validity for any set of
quadrature points.

An example of this is shown in the 𝑟-adaptive mesh optimization of a two-dimensional turbine blade geometry
using fourth-order quadrilateral elements. The optimization process with and without the proposed approach, which
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ensures mesh validity either at discrete locations (mesh nodes and quadrature points) or throughout the entire element,
respectively, is shown in Fig. 9. Without the proposed approach, the optimization process yielded an inverted mesh
element in the top right of the domain, which can be seen by twisting-like behavior in the visualization of nodes in the
reference space of the element. With the proposed approach, this behavior was not observed, and the optimized mesh
is guaranteed to be valid.

(a) Optimization without proposed approach

(b) Optimization with proposed approach

Figure 9: Mesh optimization without (top row) and with (bottom row) the proposed mesh validity bounding strategy for
a blade geometry. Original mesh shown on left, optimized mesh shown in middle, and zoom-in on red region shown on
right. Zoom-in region shows node renderings (equispaced on the reference element) to visualize mesh inversion.

3.2. Continuously bounds-preserving limiting
The proposed approach was then implemented in the context of continuously bounds-preserving limiting for high-

order DG schemes. We first look at a representative example of the interpolation of a step function, where the presence
of Gibbs phenomena in polynomial interpolation results in overshoots and undershoots, a commonly encountered
problem in the approximation of hyperbolic conservation laws. The metric of interest here is the ability of the approach
in predicting a lower/upper bound on the solution polynomial, which can be compared to the true minima/maxima
(obtained via brute force sampling approximations) and methods such as taking the minimum/maximum Bernstein
coefficients. We consider an interpolation of a step function 𝑢0(𝑥) onto the Gauss–Lobatto nodes, given as

𝑢0(𝑥) =
⎧⎪⎨⎪⎩

−0.5 if 𝑥 < 0,
0 if 𝑥 = 0,

0.5 if 𝑥 > 0.
(27)
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Here, the extrema of the solution polynomial 𝑢ℎ(𝑥) exceed ±0.5 due to overshoots/undershoots, with their magnitude
depending on the order of the interpolating polynomial. A comparison of the predicted extrema as obtained by an
exact (brute force sampling) approximation, the proposed approach (with 𝑀 = 𝑁), and a Bernstein-based approach is
shown in Table 1 for a variety of approximation orders. It can be seen that the proposed approach tightly bounds the true
extrema, with relative errors generally less than 10% that only mildly increased with increasing approximation order.
In contrast, the Bernstein approximation yielded much larger errors, often 10 − 100 times larger than the proposed
approach, which grew quickly with increasing approximation order. These results indicate that the proposed method
may yield much tighter bounds than approaches based on convex hull properties such as Bernstein representations.

ℙ3 ℙ4 ℙ5 ℙ6 ℙ7
Exact ± 0.6286 ± 0.5342 ± 0.6368 ± 0.5340 ± 0.6389

Bernstein ± 1.1967 ± 0.7116 ± 3.0758 ± 1.1040 ± 8.8450
Present work (𝑀 = 𝑁) ± 0.6530 ± 0.5867 ± 0.6780 ± 0.6236 ± 0.7080

Error reduction −95.7% −70.4% −98.3% −84.3% −99.2%

Table 1: Predicted extrema for a polynomial interpolating a step function [−0.5, 0.5] on the Gauss–Lobatto nodes at
varying approximation orders. Error reduction in the bounds between the present approach (with 𝑀 = 𝑁) and Bernstein
approach shown on bottom.

This approach was then implemented in time-dependent simulations of the linear transport equation using the
limiter described in Section 2.3. The example of the solid body rotation problem of LeVeque [33] was used, where the
domain is set as the unit square [0, 1]2 with periodic boundary conditions, and the initial conditions are given as

𝑢0(𝐱) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if (𝑥 − 0.5)2 + (𝑦 − 0.75)2 ≤ 0.152

and 𝑥, 𝑦 ∉ [0.475, 0.525] × [0.6, 0.85],
0.25

(
1 + cos

(
𝜋

0.15

√
(𝑥 − 0.25)2 + (𝑦 − 0.5)2

))
, if (𝑥 − 0.25)2 + (𝑦 − 0.5)2 ≤ 0.152,

1 −
√
(𝑥 − 0.5)2 + (𝑦 − 0.25)2∕0.15, if (𝑥 − 0.5)2 + (𝑦 − 0.25)2 ≤ 0.152,

0, else.

(28)

The advection velocity field was set as

𝑐(𝐱) = [−2𝜋(𝑦 − 0.5), 2𝜋(𝑥 − 0.5)]𝑇 , (29)

which induced a counterclockwise rotation with constant angular velocity about the domain center, completing one full
revolution per unit time. These initial conditions include solution profiles of varying continuity: a 𝐶∞ cosinusoidal
hump, a 𝐶0 sharp cone, and a discontinuous notched cylinder. These features pose challenges for high-order approx-
imations, potentially leading to violations of the maximum principle. For this problem, a global maximum principle
of the form 𝑢ℎ(𝐱, 𝑡) ∈ [0, 1] was enforced continuously using the proposed approach.

The solution as computed with a ℙ3 DG approximation using uniform meshes with a varying number of quadrilat-
eral elements (denoted by 𝑁𝑒) is shown in Fig. 10 at the final time 𝑡 = 1. It can be seen that with increasing resolution,
the numerical diffusion around the notched cylinder decreased, such that the initial profile was well-recovered at the
highest resolution. Furthermore, the solution did not exceed the bounds of the initial conditions. This was quantita-
tively verified and presented in Table 2, which shows the minimum and maximum values of 𝑢ℎ(𝐱), computed via a
brute force sampling approach, at the final time. The proposed approach ensured that the solution remained within
the bounds 𝑢ℎ(𝐱, 𝑡) ∈ [0, 1], with the highest resolution enforcing bounds to essentially machine precision levels. This
convergence of the extrema to the exact bounds with respect to the increasing mesh resolution can be attributed to the
lower numerical dissipation at higher resolution levels.
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(a) 𝑁𝑒 = 322 (b) 𝑁𝑒 = 642 (c) 𝑁𝑒 = 1282

Figure 10: Solution contours for the solid body rotation problem at 𝑡 = 1 as computed by a ℙ3 DG approximation with
global maximum principle bounds 𝑢ℎ(𝐱, 𝑡) ∈ [0, 1] on a varying number of quadrilateral mesh elements 𝑁𝑒.

𝑁𝑒 min
𝐱

𝑢ℎ(𝐱, 1) max
𝐱

𝑢ℎ(𝐱, 1)
162 9.08592 × 10−7 0.97632323
322 1.56217 × 10−9 0.98881219
642 8.34347 × 10−13 0.99984185
1282 7.86022 × 10−14 0.99999856

Table 2: Minimum/maximum values of the solution (computed via brute force sampling) for the solid body rotation
problem at 𝑡 = 1 as computed by a ℙ3 DG approximation with global maximum principle bounds 𝑢ℎ(𝐱, 𝑡) ∈ [0, 1] on a
varying number of quadrilateral mesh elements 𝑁𝑒.

4. Conclusions
In this work, we introduced a novel approach to bounding extrema in high-order polynomial approximations in

finite element methods. The approach relies on precomputed piece-wise linear bounding boxes for polynomial basis
functions stemming from a constrained optimization problem, enabling accurate and efficient local bounds for any
polynomial formed from these bases. The accuracy of these bounds can be further improved through a simple ba-
sis transformation, and the method is applicable to arbitrary element types and approximation orders while remaining
computationally efficient for on-the-fly evaluation. Some applications of the proposed approach are shown in mesh va-
lidity checks and optimization for high-order curved meshes, ensuring positivity of the element Jacobian determinant,
as well as in continuously bounds-preserving limiters for hyperbolic systems, where it enforces maximum princi-
ple constraints across the entire solution polynomial. Furthermore, comparisons to traditional approaches relying on
convex hull properties such as Bernstein polynomials show significantly tighter bounds. These results highlight the
potential of the approach, which is applicable to not only finite element methods but also various problems in scientific
computing ranging from computer graphics to collision detection.
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A. Tensor-product optimizations for higher dimensions
For tensor-product bases in higher dimensions, computation of the bounds and corresponding 𝐿2 projections sim-

plifies to solving a sequence of one-dimensional problems along each coordinate direction. For example, the two-
dimensional tensor-product solution,

𝑢ℎ(𝑥, 𝑦) =
𝑁∑
𝑗=1

𝑁∑
𝑖=1

𝑢𝑖𝑗𝜙𝑖(𝑥)𝜙𝑗(𝑦) (30)

can be equivalent represented in terms of a polynomial along one direction (e.g. 𝑦) for which its coefficients 𝑤𝑗 vary
with respect to the other direction (e.g., 𝑥) as

𝑢(𝑥, 𝑦) =
𝑁∑
𝑗=1

( 𝑁∑
𝑖=1

𝑢𝑖𝑗𝜙𝑖(𝑥)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑤𝑗 (𝑥)

𝜙𝑗(𝑦), (31a)

𝑢(𝑥 = 𝜂𝑘, 𝑦) =
𝑁∑
𝑗=1

𝑤𝑗(𝑥 = 𝜂𝑘)𝜙𝑗(𝑦). (31b)

In (31b), the minimum and maximum bounds on 𝑤𝑗(𝑥 = 𝜂𝑘) can be computed using (10) at the 𝑘 = 1…𝑀 control
points for each 𝑗 ∈ [1, 𝑁]. Then, bounding (31b) entails repeating the one-dimensional bounding procedure:

𝑞−(𝜂𝑘, 𝜂𝑙) = 𝑢𝑘,𝐿𝑂(𝜂𝑙) +
𝑁∑
𝑗=1

min(𝑤′−
𝑗 (𝜂𝑘)𝑞−𝑗 (𝜂𝑙), 𝑤

′+
𝑗 (𝜂𝑘)𝑞−𝑗 (𝜂𝑙)), (32a)

𝑞+(𝜂𝑘, 𝜂𝑙) = 𝑢𝑘,𝐿𝑂(𝜂𝑙) +
𝑁∑
𝑗=1

max(𝑤′−
𝑗 (𝜂𝑘)𝑞−𝑗 (𝜂𝑙), 𝑤

′+
𝑗 (𝜂𝑘)𝑞−𝑗 (𝜂𝑙)). (32b)

Here, 𝑢𝑘,𝐿𝑂 represents the ℙ1 fit of 𝑢(𝑥 = 𝜂𝑘, 𝑦) and 𝑤′−
𝑗 and 𝑤

′+
𝑗 denote the minimum/maximum bounds, respectively,

on the coefficients 𝑤′
𝑗 of the high-order fluctuations (computed after offsetting the linear fit). The tensor-product

simplification results in the total computational cost of (𝑁𝑑𝑀 +𝑁𝑀𝑑) for a 𝑑-dimensional function (as opposed
to (𝑁𝑑𝑀𝑑)). An implementation of these optimizations is presented in [22]. Note that this simplification does not
extend to non tensor-product elements (e.g., simplices) where the computational cost of bounding the polynomial then
scales directly as the product of the total number of basis functions and control nodes.

B. Bounding box examples
We present here some tabulated examples of the optimized bounding boxes for Gauss–Lobatto interpolating basis

functions at varying approximation orders and number of control nodes from 𝑀 = 𝑁 to 𝑀 = 𝑁 + 2.

B.1. 𝑀 = 𝑁

𝜙1 𝜙2 𝜙3
𝐿1 0.8752491 −0.0010021 −0.1247509
𝐿2 −0.1252514 0.9999990 −0.1252514
𝐿3 −0.1247509 −0.0010021 0.8752491
𝑈 1 1.0005016 0.2495008 0.0005016
𝑈 2 0.0000010 1.2505018 0.0000010
𝑈 3 0.0005016 0.2495008 1.0005016

Table 3: Lower and upper bounding box control node values for a ℙ2 Gauss–Lobatto interpolating polynomial with 𝑀 = 3.
Control nodes 𝜼 = [−1.0, 0.0, 1.0].
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𝜙1 𝜙2 𝜙3 𝜙4
𝐿1 0.8948521 −0.0014658 −0.3252945 −0.0000031
𝐿2 −0.1811453 0.9993988 −0.0794586 −0.0688717
𝐿3 −0.0688717 −0.0794586 0.9993988 −0.1811453
𝐿4 −0.0000031 −0.3252945 −0.0014658 0.8948521
𝑈 1 1.0008087 0.2667580 0.0003650 0.1253381
𝑈 2 0.0128333 1.2677409 −0.0169454 0.0118659
𝑈 3 0.0118659 −0.0169454 1.2677409 0.0128333
𝑈 4 0.1253381 0.0003650 0.2667580 1.0008087

Table 4: Lower and upper bounding box control node values for a ℙ3 Gauss–Lobatto interpolating polynomial with 𝑀 = 4.
Control nodes 𝜼 = [−1.0,−0.4626417, 0.4626417, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5
𝐿1 0.9026724 −0.0023273 −0.3515760 −0.0023273 −0.0738878
𝐿2 −0.2002313 0.9984396 −0.0741776 −0.2067862 −0.0057559
𝐿3 −0.0478948 −0.1949668 0.9999989 −0.1949668 −0.0478948
𝐿4 −0.0057559 −0.2067862 −0.0741776 0.9984396 −0.2002313
𝐿5 −0.0738878 −0.0023273 −0.3515759 −0.0023273 0.9026724
𝑈 1 1.0013235 0.3227364 0.0000027 0.2049544 0.0013235
𝑈 2 0.0210607 1.2141881 0.0060579 0.0199534 0.0909730
𝑈 3 0.0438391 0.0000010 1.3036861 0.0000010 0.0438391
𝑈 4 0.0909730 0.0199534 0.0060579 1.2141881 0.0210607
𝑈 5 0.0013235 0.2049544 0.0000027 0.3227364 1.0013235

Table 5: Lower and upper bounding box control node values for a ℙ4 Gauss–Lobatto interpolating polynomial with 𝑀 = 5.
Control nodes 𝜼 = [−1.0,−0.6708529, 0.0, 0.6708529, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6
𝐿1 0.8513378 −0.0028296 −0.3920037 −0.0021114 −0.1421587 −0.0000028
𝐿2 −0.2170296 0.9995489 −0.0323278 −0.2548223 −0.0007090 −0.0607456
𝐿3 −0.0224756 −0.2453042 0.9999529 −0.1675032 −0.1511019 −0.0189264
𝐿4 −0.0189264 −0.1511019 −0.1675032 0.9999529 −0.2453042 −0.0224756
𝐿5 −0.0607456 −0.0007090 −0.2548223 −0.0323278 0.9995489 −0.2170296
𝐿6 −0.0000028 −0.1421587 −0.0021114 −0.3920037 −0.0028296 0.8513378
𝑈 1 1.0021237 0.4395637 0.0004805 0.2277843 0.0007634 0.0535520
𝑈 2 −0.0106906 1.1844705 0.1323575 0.0008303 0.1665040 0.0012256
𝑈 3 0.0633344 −0.0049788 1.2671846 0.0051295 0.0586046 0.0687812
𝑈 4 0.0687812 0.0586046 0.0051295 1.2671846 −0.0049788 0.0633344
𝑈 5 0.0012256 0.1665040 0.0008303 0.1323575 1.1844705 −0.0106906
𝑈 6 0.0535520 0.0007634 0.2277843 0.0004805 0.4395637 1.0021237

Table 6: Lower and upper bounding box control node values for a ℙ5 Gauss–Lobatto interpolating polynomial with 𝑀 = 6.
Control nodes 𝜼 = [−1.0,−0.7589109,−0.2823207, 0.2823207, 0.7589109, 1.0].

B.2. 𝑀 = 𝑁 + 1
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𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6 𝜙7
𝐿1 0.8042527 −0.0037149 −0.4107312 −0.0024327 −0.1579100 −0.0037149 −0.0368755
𝐿2 −0.2275404 0.9950029 −0.0004258 −0.2680649 0.0105489 −0.1254623 0.0031652
𝐿3 −0.0133993 −0.2691138 0.9994716 −0.1608572 −0.1963252 −0.0309949 −0.0486212
𝐿4 −0.0312508 −0.1278783 −0.2224863 0.9999990 −0.2224863 −0.1278783 −0.0312508
𝐿5 −0.0486212 −0.0309949 −0.1963252 −0.1608572 0.9994716 −0.2691138 −0.0133993
𝐿6 0.0031652 −0.1254623 0.0105489 −0.2680649 −0.0004258 0.9950029 −0.2275404
𝐿7 −0.0368755 −0.0037149 −0.1579100 −0.0024327 −0.4107312 −0.0037149 0.8042527
𝑈 1 1.0028231 0.4976582 0.0006166 0.2356049 0.0006166 0.0993084 0.0028231
𝑈 2 −0.0339076 1.1872082 0.1688978 −0.0154549 0.1829468 −0.0073889 0.0489994
𝑈 3 0.0744049 0.0173077 1.2513780 −0.0170501 0.0580635 0.1376125 0.0123804
𝑈 4 0.0576242 0.0889146 0.0000010 1.3036627 0.0000010 0.0889146 0.0576242
𝑈 5 0.0123804 0.1376125 0.0580635 −0.0170501 1.2513780 0.0173077 0.0744049
𝑈 6 0.0489994 −0.0073889 0.1829468 −0.0154549 0.1688978 1.1872082 −0.0339076
𝑈 7 0.0028231 0.0993084 0.0006166 0.2356049 0.0006166 0.4976582 1.0028231

Table 7: Lower and upper bounding box control node values for a ℙ6 Gauss–Lobatto interpolating polynomial with 𝑀 = 7.
Control nodes 𝜼 = [−1.0,−0.815025,−0.476498, 0.0, 0.476498, 0.815025, 1.0].

𝜙1 𝜙2 𝜙3
𝐿1 0.9451077 −0.0006684 −0.0548923
𝐿2 0.1671654 0.8882205 −0.1671675
𝐿3 −0.1671675 0.8882205 0.1671654
𝐿4 −0.0548923 −0.0006684 0.9451077
𝑈 1 1.0003347 0.1097835 0.0003347
𝑈 2 0.2230567 1.0000011 −0.1112761
𝑈 3 −0.1112761 1.0000010 0.2230567
𝑈 4 0.0003347 0.1097835 1.0003347

Table 8: Lower and upper bounding box control node values for a ℙ2 Gauss–Lobatto interpolating polynomial with 𝑀 = 4.
Control nodes 𝜼 = [−1.0,−0.3343328, 0.3343328, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4
𝐿1 0.9133175 −0.0013835 −0.1691465 −0.0001780
𝐿2 −0.0060187 0.9657676 −0.2000494 0.0314012
𝐿3 −0.1895477 0.6236876 0.6236876 −0.1895477
𝐿4 0.0314012 −0.2000494 0.9657676 −0.0060187
𝐿5 −0.0001780 −0.1691465 −0.0013835 0.9133175
𝑈 1 1.0007523 0.1722848 0.0007549 0.0632003
𝑈 2 0.1115588 1.1738419 −0.1087275 0.0531246
𝑈 3 −0.1244389 0.7053872 0.7053872 −0.1244389
𝑈 4 0.0531246 −0.1087275 1.1738419 0.1115588
𝑈 5 0.0632003 0.0007549 0.1722848 1.0007523

Table 9: Lower and upper bounding box control node values for a ℙ3 Gauss–Lobatto interpolating polynomial with 𝑀 = 5.
Control nodes 𝜼 = [−1.0,−0.5606852, 0.0, 0.5606852, 1.0].

B.3. 𝑀 = 𝑁 + 2
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𝜙1 𝜙2 𝜙3 𝜙4 𝜙5
𝐿1 0.9205495 −0.0022944 −0.2394212 −0.0022944 −0.0540298
𝐿2 −0.1007104 0.9817825 −0.1552628 −0.0006023 −0.0190016
𝐿3 −0.1602338 0.2756817 0.9011641 −0.3140172 0.0500969
𝐿4 0.0500969 −0.3140172 0.9011641 0.2756817 −0.1602338
𝐿5 −0.0190016 −0.0006023 −0.1552628 0.9817825 −0.1007104
𝐿6 −0.0540298 −0.0022944 −0.2394212 −0.0022944 0.9205495
𝑈 1 1.0012947 0.1944317 0.0007171 0.1535178 0.0012947
𝑈 2 0.0783273 1.2354373 −0.0857886 0.0557246 0.0087225
𝑈 3 −0.0699741 0.3570428 1.0007138 −0.1656079 0.0947372
𝑈 4 0.0947372 −0.1656079 1.0007138 0.3570428 −0.0699741
𝑈 5 0.0087225 0.0557246 −0.0857886 1.2354373 0.0783273
𝑈 6 0.0012947 0.1535178 0.0007171 0.1944317 1.0012947

Table 10: Lower and upper bounding box control node values for a ℙ4 Gauss–Lobatto interpolating polynomial with
𝑀 = 6. Control nodes 𝜼 = [−1.0,−0.7088516,−0.1740483, 0.1740483, 0.7088516, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6
𝐿1 0.8814769 −0.0029636 −0.3117680 −0.0017280 −0.1154057 −0.0002392
𝐿2 −0.1585389 0.9968812 −0.0992253 −0.0897185 −0.0204307 −0.0230939
𝐿3 −0.1045286 0.0675661 0.9617801 −0.2884231 0.0557476 −0.0484811
𝐿4 0.0624990 −0.3492784 0.6306984 0.6306984 −0.3492784 0.0624990
𝐿5 −0.0484811 0.0557476 −0.2884231 0.9617801 0.0675661 −0.1045286
𝐿6 −0.0230939 −0.0204307 −0.0897185 −0.0992253 0.9968812 −0.1585389
𝐿7 −0.0002392 −0.1154057 −0.0017280 −0.3117680 −0.0029636 0.8814769
𝑈 1 1.0021031 0.2958899 0.0011181 0.1940650 0.0006478 0.0433088
𝑈 2 0.0302645 1.2313505 −0.0380837 0.0317172 0.0624364 0.0084858
𝑈 3 −0.0307161 0.1666680 1.1549303 −0.1222708 0.1379809 −0.0183029
𝑈 4 0.1220502 −0.1946476 0.7419176 0.7419176 −0.1946476 0.1220502
𝑈 5 −0.0183029 0.1379809 −0.1222708 1.1549303 0.1666680 −0.0307161
𝑈 6 0.0084858 0.0624364 0.0317172 −0.0380837 1.2313505 0.0302645
𝑈 7 0.0433088 0.0006478 0.1940650 0.0011181 0.2958899 1.0021031

Table 11: Lower and upper bounding box control node values for a ℙ5 Gauss–Lobatto interpolating polynomial with
𝑀 = 7. Control nodes 𝜼 = [−1.0,−0.7809033,−0.3683177, 0.0, 0.3683177, 0.7809033, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6 𝜙7
𝐿1 0.8672816 −0.0044051 −0.3464291 −0.0012834 −0.1320094 −0.0044051 −0.0316918
𝐿2 −0.1882615 0.9994606 −0.0715195 −0.1477100 −0.0133397 −0.0720893 −0.0024119
𝐿3 −0.0701976 −0.0705482 0.9808790 −0.2530301 0.0389030 −0.0729852 0.0012625
𝐿4 0.0435990 −0.3213648 0.3225332 0.8711237 −0.3511253 0.0900655 −0.0614205
𝐿5 −0.0614205 0.0900655 −0.3511253 0.8711237 0.3225332 −0.3213648 0.0435990
𝐿6 0.0012625 −0.0729852 0.0389030 −0.2530301 0.9808790 −0.0705482 −0.0701976
𝐿7 −0.0024119 −0.0720893 −0.0133397 −0.1477100 −0.0715195 0.9994606 −0.1882615
𝐿8 −0.0316918 −0.0044051 −0.1320094 −0.0012834 −0.3464291 −0.0044051 0.8672816
𝑈 1 1.0025747 0.3876858 0.0014470 0.2088437 0.0014470 0.0842040 0.0025747
𝑈 2 0.0122092 1.1873133 −0.0135598 0.0199451 0.1099858 0.0068122 0.0278756
𝑈 3 0.0074195 0.1135189 1.2483446 −0.0924604 0.1171454 −0.0047314 0.0280131
𝑈 4 0.1198678 −0.1305006 0.4334031 1.0010918 −0.1864547 0.1717669 −0.0307710
𝑈 5 −0.0307710 0.1717669 −0.1864547 1.0010918 0.4334031 −0.1305006 0.1198678
𝑈 6 0.0280131 −0.0047314 0.1171454 −0.0924604 1.2483446 0.1135189 0.0074195
𝑈 7 0.0278756 0.0068122 0.1099858 0.0199451 −0.0135598 1.1873133 0.0122092
𝑈 8 0.0025747 0.0842040 0.0014470 0.2088437 0.0014470 0.3876858 1.0025747

Table 12: Lower and upper bounding box control node values for a ℙ6 Gauss–Lobatto interpolating polynomial with
𝑀 = 8. Control nodes 𝜼 = [−1.0,−0.8350809,−0.5144829,−0.1380507, 0.1380507, 0.5144829, 0.8350809, 1.0].
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𝜙1 𝜙2 𝜙3
𝐿1 0.9689364 −0.0005010 −0.0310636
𝐿2 0.3441870 0.7494982 −0.1563135
𝐿3 −0.0313136 0.9999989 −0.0313136
𝐿4 −0.1563135 0.7494982 0.3441870
𝐿5 −0.0310636 −0.0005010 0.9689364
𝑈 1 1.0002510 0.0621262 0.0002510
𝑈 2 0.3755017 0.8121255 −0.1249988
𝑈 3 0.0000010 1.0626262 0.0000010
𝑈 4 −0.1249988 0.8121255 0.3755017
𝑈 5 0.0002510 0.0621262 1.0002510

Table 13: Lower and upper bounding box control node values for a ℙ2 Gauss–Lobatto interpolating polynomial with
𝑀 = 5. Control nodes 𝜼 = [−1.0,−0.5005005, 0.0, 0.5005005, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4
𝐿1 0.9293782 −0.0012073 −0.0763332 −0.0002401
𝐿2 0.1943347 0.8698771 −0.2587864 0.0504246
𝐿3 −0.1629644 0.9291326 0.2080413 −0.0876780
𝐿4 −0.0876780 0.2080413 0.9291326 −0.1629644
𝐿5 0.0504246 −0.2587864 0.8698771 0.1943347
𝐿6 −0.0002401 −0.0763332 −0.0012073 0.9293782
𝑈 1 1.0006480 0.1231346 0.0006972 0.0320353
𝑈 2 0.2486074 0.9819215 −0.1689090 0.0728559
𝑈 3 −0.1004879 1.0175813 0.2358163 −0.0571863
𝑈 4 −0.0571863 0.2358163 1.0175813 −0.1004879
𝑈 5 0.0728559 −0.1689090 0.9819215 0.2486074
𝑈 6 0.0320353 0.0006972 0.1231346 1.0006480

Table 14: Lower and upper bounding box control node values for a ℙ3 Gauss–Lobatto interpolating polynomial with
𝑀 = 6. Control nodes 𝜼 = [−1.0,−0.6627409,−0.2704891, 0.2704891, 0.6627409, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5
𝐿1 0.9256847 −0.0021771 −0.1512635 −0.0021771 −0.0340882
𝐿2 0.0332879 0.9424694 −0.2213716 0.0614982 −0.0321799
𝐿3 −0.1970720 0.7037976 0.5453535 −0.2638854 0.0575199
𝐿4 −0.0000277 −0.0926919 0.9999989 −0.0926919 −0.0000277
𝐿5 0.0575199 −0.2638854 0.5453535 0.7037976 −0.1970720
𝐿6 −0.0321799 0.0614982 −0.2213716 0.9424694 0.0332879
𝐿7 −0.0340882 −0.0021771 −0.1512635 −0.0021771 0.9256847
𝑈 1 1.0012113 0.1487162 0.0011010 0.0953204 0.0012113
𝑈 2 0.1515358 1.1429299 −0.1355102 0.0943803 −0.0206778
𝑈 3 −0.1302360 0.7846015 0.6027643 −0.1783198 0.0886312
𝑈 4 0.0213470 0.0000010 1.1592583 0.0000010 0.0213470
𝑈 5 0.0886312 −0.1783198 0.6027643 0.7846015 −0.1302360
𝑈 6 −0.0206778 0.0943803 −0.1355102 1.1429299 0.1515358
𝑈 7 0.0012113 0.0953204 0.0011010 0.1487162 1.0012113

Table 15: Lower and upper bounding box control node values for a ℙ4 Gauss–Lobatto interpolating polynomial with
𝑀 = 7. Control nodes 𝜼 = [−1.0,−0.748869,−0.3902752, 0.0, 0.3902752, 0.748869, 1.0].
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𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6
𝐿1 0.9217631 −0.0029380 −0.2086252 −0.0012131 −0.0852034 −0.0003771
𝐿2 −0.0590266 0.9696819 −0.1812597 0.0503179 −0.0446515 0.0039713
𝐿3 −0.1835269 0.4485174 0.7816147 −0.3214941 0.1006510 −0.0562234
𝐿4 0.0354455 −0.2631267 0.9620203 0.1327682 −0.1330200 0.0232467
𝐿5 0.0232467 −0.1330200 0.1327682 0.9620203 −0.2631267 0.0354455
𝐿6 −0.0562234 0.1006510 −0.3214941 0.7816147 0.4485174 −0.1835269
𝐿7 0.0039713 −0.0446515 0.0503179 −0.1812597 0.9696819 −0.0590266
𝐿8 −0.0003771 −0.0852034 −0.0012131 −0.2086252 −0.0029380 0.9217631
𝑈 1 1.0016678 0.1777987 0.0013446 0.1391356 0.0011777 0.0320639
𝑈 2 0.1044963 1.2121039 −0.1067707 0.0742302 −0.0188173 0.0168841
𝑈 3 −0.1032605 0.5296652 0.8683576 −0.2021384 0.1654181 −0.0349335
𝑈 4 0.0758169 −0.1195865 1.1014727 0.1696700 −0.0682086 0.0525290
𝑈 5 0.0525290 −0.0682086 0.1696700 1.1014727 −0.1195865 0.0758169
𝑈 6 −0.0349335 0.1654181 −0.2021384 0.8683576 0.5296652 −0.1032605
𝑈 7 0.0168841 −0.0188173 0.0742302 −0.1067707 1.2121039 0.1044963
𝑈 8 0.0320639 0.0011777 0.1391356 0.0013446 0.1777987 1.0016678

Table 16: Lower and upper bounding box control node values for a ℙ5 Gauss–Lobatto interpolating polynomial with
𝑀 = 8. Control nodes 𝜼 = [−1.0,−0.8130556,−0.4844534,−0.2002159, 0.2002159, 0.4844534, 0.8130556, 1.0].

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6 𝜙7
𝐿1 0.8820262 −0.0043969 −0.2829537 −0.0018566 −0.1144250 −0.0043969 −0.0275098
𝐿2 −0.1316740 0.9933112 −0.1219835 −0.0390320 −0.0269245 −0.0290033 −0.0064344
𝐿3 −0.1334867 0.2069536 0.9108360 −0.3155131 0.0852977 −0.1012546 0.0186195
𝐿4 0.0599605 −0.3253191 0.8260690 0.4037208 −0.2764464 0.0812513 −0.0575199
𝐿5 −0.0153225 −0.0043037 −0.1241529 0.9999990 −0.1241529 −0.0043037 −0.0153225
𝐿6 −0.0575199 0.0812513 −0.2764464 0.4037208 0.8260690 −0.3253191 0.0599605
𝐿7 0.0186195 −0.1012546 0.0852977 −0.3155131 0.9108360 0.2069536 −0.1334867
𝐿8 −0.0064344 −0.0290033 −0.0269245 −0.0390320 −0.1219835 0.9933112 −0.1316740
𝐿9 −0.0275098 −0.0043969 −0.1144250 −0.0018566 −0.2829537 −0.0043969 0.8820262
𝑈 1 1.0025552 0.2731979 0.0010892 0.1817791 0.0010892 0.0729928 0.0025552
𝑈 2 0.0453892 1.2302202 −0.0552581 0.0437034 0.0383789 0.0171716 0.0119274
𝑈 3 −0.0641939 0.2868293 1.0638067 −0.1670870 0.1621118 −0.0502689 0.0385482
𝑈 4 0.1066365 −0.1927206 0.9277952 0.4688045 −0.1547364 0.1603258 −0.0284066
𝑈 5 0.0025432 0.0455342 0.0002050 1.1968939 0.0002050 0.0455342 0.0025432
𝑈 6 −0.0284066 0.1603258 −0.1547364 0.4688045 0.9277952 −0.1927206 0.1066365
𝑈 7 0.0385482 −0.0502689 0.1621118 −0.1670870 1.0638067 0.2868293 −0.0641939
𝑈 8 0.0119274 0.0171716 0.0383789 0.0437034 −0.0552581 1.2302202 0.0453892
𝑈 9 0.0025552 0.0729928 0.0010892 0.1817791 0.0010892 0.2731979 1.0025552

Table 17: Lower and upper bounding box control node values for a ℙ6 Gauss–Lobatto interpolating polynomial with
𝑀 = 9. Control nodes 𝜼 = [−1.0,−0.8470722,−0.5666633,−0.3204544, 0.0, 0.3204544, 0.5666633, 0.8470722, 1.0].
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