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A B S T R A C T

In this work, we present a positivity-preserving high-order flux reconstruction method for the
polyatomic Boltzmann–BGK equation augmented with a discrete velocity model that ensures
the scheme is discretely conservative. Through modeling the internal degrees of freedom, the
approach is further extended to polyatomic molecules and can encompass arbitrary constitutive
laws. The approach is validated on a series of large-scale complex numerical experiments, rang-
ing from shock-dominated flows computed on unstructured grids to direct numerical simulation
of three-dimensional compressible turbulent flows, the latter of which is the first instance of
such a flow computed by directly solving the Boltzmann equation. The results show the ability
of the scheme to directly resolve shock structures without any ad hoc numerical shock capturing
method and correctly approximate turbulent flow phenomena in a consistent manner with the
hydrodynamic equations.

1. Introduction
The development and application of computational fluid dynamics methods have, for the most part, focused on

solutions of the Euler and Navier–Stokes equations to give insight into the dynamics of fluid flow. These approaches
naturally rely on the notion that the continuum assumption can be regarded as valid for the given fluid, such that
transport phenomena can be adequately described solely through the macroscopic flow variables (e.g., density, velocity,
etc). However, for many problems of interest, such as rarefied gases and hypersonic flows, the continuum assumption
starts to break down as collisions between molecules become less frequent and regions of the flow significantly deviate
from thermodynamic equilibrium. In such cases, it becomes necessary to revert to the governing equations of molecular
gas dynamics which underpin the macroscopic behavior of the fluid. These methods, which derive from the kinetic
theory of gases, can offer a more detailed description of non-equilibrium systems and flows outside of the continuum
regime while seamlessly recovering the hydrodynamic equations in the asymptotic limit.

To characterize gas dynamics at the molecular level, the Boltzmann equation can be used to provide a statistical
description of particle transport and collision [1]. In comparison to the Euler and Navier–Stokes equations, which solve
for the nonlinear transport of the conserved flow variables, the Boltzmann equation simply solves for a scalar quantity,
the distribution function or probability density function, for which the transport can be represented linearly. The com-
plexity of this governing equation instead comes from two main sources: dimensionality and suitable modeling of the
interactions among molecules. With regard to the former, the distribution function can be considered as a probability
measure for particles existing at a given location with a certain velocity. As such, it must be defined over physical
space and velocity space (and time), which can require discretization of up to 6-dimensional spaces. This problem is
further compounded when attempting to model additional internal degrees of freedom (e.g., rotation, vibration, etc.),
which can require discretizations of even higher dimensionality [2]. Furthermore, the proper discretization of the ve-
locity space, which is, in theory, unbounded, is an open problem, with varying methods offering differing advantages
in terms of accuracy, stability, and computational cost [3]. For the latter, the approximation of particle interactions
in velocity space can be the most costly and algorithmically complex part of the Boltzmann equation, requiring inte-
gration over spaces of even higher dimension than the velocity space itself. This collision approximation also can, in
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many scenarios, cause the governing equation to become exceedingly stiff, further complicating attempts at efficient
computation.

To reduce the computational cost associated with the direct computation of the collision term, an approximate
model of the collision process can instead be used. One such approach, the BGK (Bhatnagar–Gross–Krook) [4] model,
simplifies this process to a relaxation of a gas in non-equilibrium tending towards thermodynamic equilibrium, avoiding
much of the computational cost associated with computing the collision integrals. This simplified model retains much
of the behavior of the full collision operator, including its entropy-satisfying properties embedded in Boltzmann’s
H-theorem and convergence to the continuum approximation in the asymptotic limit, albeit with some corrections
necessary to recover the proper transport coefficients. One additional drawback of the BGK model is that for general
implementations, conservation of the macroscopic flow variables is only guaranteed if the integration in velocity space
can be carried out exactly, which is usually not the case for discrete representations [5]. A common approach to remedy
this issue is to resolve the velocity space finely enough such that the integration errors are negligible [6], but this comes
at the expense of even further increasing the computational cost of solving the system.

A potential improvement in the cost of solving the Boltzmann equation can be obtained through the use of a higher-
fidelity spatial discretization. The typical schemes of choice for implementations of the Boltzmann equation on general
unstructured grids are low-order finite volume methods [7, 8] which are generally simple to implement and numeri-
cally robust. However, these benefits come with the drawback of low accuracy per degree of freedom and excessive
numerical dissipation that makes them prohibitively expensive for scale-resolving simulations. An alternative class of
schemes that are more suited for these types of problems are high-order discontinuous spectral element methods. These
schemes offer many advantages in the simulation of multi-scale phenomena due to their ability to achieve high-order
accuracy on general unstructured grids while still retaining a compact data structure suited for modern massively-
parallel computing architectures. As a result, the amount of resolution required by these schemes to achieve a certain
level of accuracy can be significantly lower than for low-order finite volume methods, which opens up the possibil-
ity of simulating complex flow problems that may otherwise be computationally intractable. The use of high-order
discontinuous spectral element methods for the approximation of the Boltzmann equation has been attempted in the
recent works of Xiao [9] and Jaiswal [10] with very promising results. The drawback of these methods is that they are
more algorithmically complex and typically far less robust, which can limit their potential as a method of reducing the
computational cost associated with the Boltzmann equation.

The objective of this work is therefore to propose, develop, and validate an efficient numerical approach for accu-
rately and robustly solving the Boltzmann–BGK equation with the goal of drastically reducing the computational cost
and enabling its application to three-dimensional problems that were hitherto intractable. We utilize the flux recon-
struction scheme of Huynh [11], a high-order discontinuous spectral element method, augmented with a positivity-
preserving limiter that ensures the positivity of the distribution function as well as the macroscopic density/pressure.
This spatial discretization is paired with a nodal discretization of the velocity space utilizing a modified form of the dis-
crete velocity model of Mieussens [7] which guarantees the scheme remains conservative and well-balanced regardless
of the resolution. Furthermore, we extend the approach to polyatomic molecules and general constitutive laws through
an appropriate model for the internal degrees of freedom. The applicability of the proposed approach is shown in a se-
ries of complex numerical experiments, ranging from shock-dominated flows computed on unstructured grids without
any numerical shock capturing algorithm to direct numerical simulation of three-dimensional compressible turbulent
flows, the latter of which is, to the authors’ knowledge, the first instance of such a flow computed by directly solving
the Boltzmann equation.

To this end, the organization of this paper is as follows. Some preliminaries on the various properties of the
Boltzmann–BGK equation and the associated discretization methods are presented in Section 2. The methodology
of the proposed approach is then presented in Section 3, followed by the details of the numerical implementation in
Section 4. The results of various numerical experiments are then shown in Section 5, and conclusions are drawn in
Section 6.

2. Preliminaries
This work pertains to approximations of the polyatomic Boltzmann equation with arbitrary constitutive laws, given

as
𝜕𝑡𝑓 (𝐱,𝐮, 𝜁 , 𝑡) + 𝐮⋅∇𝑓 = (𝑓, 𝑓 ′), (1)
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where 𝐱 ∈ Ω𝐱 is the physical space for some physical domain Ω𝐱 ⊆ ℝ𝑑 and spatial dimension 𝑑, 𝐮 ∈ Ω𝐮 is the
associated velocity space for some velocity domain Ω𝐮 ∈ ℝ𝑚 and velocity dimension 𝑚 ≥ 𝑑, 𝜁 ∈ ℝ+ is the internal
energy, 𝑓 (𝐱,𝐮, 𝜁 , 𝑡) ∈ ℝ is a scalar particle distribution function, and (𝑓, 𝑓 ′) is some collision operator that accounts
for intermolecular interactions [1]. This distribution function, describing the microscopic state of the system, gives
a measure of the probability density of particles existing at a given location 𝐱 traveling at a given velocity 𝐮 (the
combination of which is referred to as a point in phase space) with an internal energy 𝜁 . The internal energy is given
as a continuous variable that takes into account any additional degrees of freedom such as rotational and vibrational
modes or unresolved velocity components [2]. From this distribution, one can gather information about the unique
macroscopic state of the system (i.e., the conserved flow variables 𝐐(𝐱, 𝑡)) through its moments,

𝐐(𝐱, 𝑡) = [𝜌, 𝜌𝐔, 𝐸]𝑇 = ∫ℝ𝑑 ∫

∞

0
𝑓 (𝐱,𝐮, 𝜁 , 𝑡) 𝝍(𝐮, 𝜁) d𝜁 d𝐮 (2)

where 𝜌 is the density, 𝜌𝐔 is the momentum vector, 𝐸 is the total energy, and 𝝍(𝐮, 𝜁) ∶= [1,𝐮, (𝐮 ⋅ 𝐮)∕2 + 𝜁 ]𝑇 is the
vector of collision invariants. We utilize the notation that the lowercase symbol 𝐮 refers to the microscopic velocity
whereas the uppercase symbol 𝐔 refers to the macroscopic velocity.

2.1. Bhatnagar–Gross–Krook Operator
Due to its high-dimensional nature, the computational cost of solving the scalar Boltzmann equation is considerably

higher than the associated conservation laws for the conserved variables 𝐐(𝐱, 𝑡). This is further exacerbated by the
complexity of the collision operator 𝐶(𝑓, 𝑓 ′), which in its full form can require integration over spaces of even higher
dimension. To ameliorate this cost, an approximate form of the collision operator was introduced by Bhatnagar et al. [4]
by modeling the collision of particles as a multidimensional relaxation process of a gas tending towards thermodynamic
equilibrium. The collision operator for the BGK (Bhatnagar–Gross–Krook) model can be given as

(𝑓, 𝑓 ′) ≈ 𝑔(𝐱,𝐮, 𝜁 , 𝑡) − 𝑓 (𝐱,𝐮, 𝜁 , 𝑡)
𝜏

, (3)

where 𝑔(𝐱,𝐮, 𝜁 , 𝑡) is the equilibrium distribution function and 𝜏 is the collision time scale. It can be shown that if the
following compatibility condition is satisfied,

∫ℝ𝑑 ∫

∞

0
𝑔(𝐱,𝐮, 𝜁 , 𝑡) 𝝍(𝐮, 𝜁) d𝜁 d𝐮 = ∫ℝ𝑑 ∫

∞

0
𝑓 (𝐱,𝐮, 𝜁 , 𝑡) 𝝍(𝐮, 𝜁) d𝜁 d𝐮, (4)

the resulting system is conservative with respect to the conserved flow variables.
For the polyatomic case, the equilibrium distribution function is given as

𝑔(𝐱,𝐮, 𝜁 , 𝑡) = 𝑔𝐮(𝐱,𝐮, 𝑡) × 𝑔𝜁 (𝐱, 𝜁 , 𝑡), (5)

where 𝑔𝐮 is the equilibrium distribution function of the monatomic case and 𝑔𝜁 (𝐱, 𝜁 , 𝑡) is an additional term used
to augment the equilibrium distribution function to account for internal degrees of freedom. We will assume that
𝑔𝜁 (𝐱, 𝜁 , 𝑡) is properly normalized such that its inclusion does not affect the moments, i.e.,

∫ℝ𝑑 ∫

∞

0
𝑔(𝐱,𝐮, 𝜁 , 𝑡) 𝝍(𝐮, 𝜁) d𝜁 d𝐮 = ∫ℝ𝑑

𝑔𝐮(𝐱,𝐮, 𝑡) 𝝍(𝐮) d𝐮 = 𝐐(𝐱, 𝑡). (6)

From the H-theorem, the monatomic equilibrium state is generally taken to be the state that minimizes the entropy
𝐻(𝑧), i.e.,

𝑔𝐮 = arg min
𝑧

𝐻(𝑧), (7)

where
𝐻(𝑧) = ∫ℝ𝑑

𝑧 log(𝑧) d𝐮. (8)

In the continuous case, the distribution function in velocity space that minimizes this entropy and satisfies Eqs. (2)
and (5) is a Maxwellian of the form

𝑔𝐮(𝐱,𝐮, 𝑡) =
𝜌(𝐱, 𝑡)

[2𝜋𝜃(𝐱, 𝑡)]𝑑∕2
exp

[

−
‖𝐮 − 𝐔(𝐱, 𝑡)‖22

2𝜃(𝐱, 𝑡)

]

, (9)
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where 𝜃 = 𝑃∕𝜌 is a scaled temperature, 𝑃 = (𝛾 − 1)(𝐸 − 𝜌(𝐔 ⋅ 𝐔)∕2) is the pressure, and 𝛾 is the ratio of specific
heats. We utilize the notation ‖ ⋅ ‖22 to denote the squared norm along the spatial dimension and 𝑔(𝐐(𝐱, 𝑡)) to denote
the Maxwellian corresponding to the conserved variables 𝐐(𝐱, 𝑡).

2.2. Internal Degrees of Freedom
In its standard form, the Boltzmann–BGK approach assumes a monatomic molecule in which the only degrees of

freedom are its translational components. This limits the number of degrees of freedom, 𝑛, to the dimensionality of the
velocity space (i.e., 𝑛 = 𝑚), which in turn, constrains the specific heat ratio by the relation 𝛾 = 1+2∕𝑛. This constraint
on the degrees of freedom imposes several difficulties for the application of the approach to practical problems. First,
there is significant interest in the simulation of real gases, many of which are polyatomic in nature, for which the
standard approach cannot be used. Secondly, even for monatomic molecules, certain flow conditions such as high
temperatures can induce additional kinetic effects such as vibration which cannot be accounted for without additional
degrees of freedom. Lastly, although this drawback is less critical, the simulation of monatomic flows with spatial
homogeneity (e.g., one-dimensional flows) requires the discretization of higher-dimensional velocity spaces to recover
the proper specific heat ratio, unnecessarily increasing the computational cost.

To simultaneously account for the additional degrees of freedom of polyatomic gases, ancillary kinetic modes such
as rotation and vibration, and arbitrary constitutive laws, Baranger et al. [2] introduced a model for internal degrees of
freedom for the molecule. In this approach, an additional dimension is considered to account for the internal energy
of the molecule 𝜁 , and the equilibrium distribution function is modified by the factor

𝑔𝜁 (𝐱, 𝜁 , 𝑡) = Λ(𝛿)
(

𝜁
𝜃(𝐱, 𝑡)

)
𝛿
2−1 1

𝜃(𝐱, 𝑡)
exp

(

− 𝜁
𝜃(𝐱, 𝑡)

)

, (10)

where 𝛿 ≥ 0 is the number of internal degrees of freedom and Λ(𝛿) = 1∕Γ(𝛿∕2) is a normalization factor to ensure
Eq. (6) is satisfied. With this model, the total degrees of freedom are then 𝑛 = 𝑚 + 𝛿, such that a specific heat ratio of
𝛾 = 1 + 2∕(𝑚 + 𝛿) can be recovered. For the monatomic case, the internal degrees of freedom are simply set as 𝛿 = 0
and the 𝜁 domain is neglected. Note that 𝛿 does not necessarily have to be an integer nor a constant (see Baranger et al.
[2], Section 3), which allows for the implementation of arbitrary constitutive laws for multi-physics applications (e.g.,
temperature-dependent internal degrees of freedom).

2.3. Velocity and Internal Energy Spaces
Discretizations for the velocity space generally fall into one of two approaches: nodal form or moment form. In the

former approach, the infinite velocity space is truncated onto a finite domain and represented by a set of discrete points.
The associated transport equation, Eq. (1), is then solved for each one of these discrete points. In the latter approach, the
distribution function and the velocity space are represented by a set of global basis functions, and the transport equation
is solved for the entire velocity space using an appropriate treatment of the inner product in Eq. (1). (e.g., orthogonal
projection). Due to their orthogonality with respect to the measure exp(−𝑥2) on the real domain, Hermite polynomials
are a natural choice for the basis functions, typically allowing for a more computationally efficient representation but
at the expense of robustness, particularly for flows deviating from equilibrium [3]. However, for the internal energy
domain, finding a set of suitable global basis functions becomes less trivial.

The focus of this work is on the former approach – nodal discretizations of the velocity and internal energy spaces
– as this method is the most general, encompassing arbitrary distribution functions and enabling the straightforward
implementation of additional physics such as the inclusion of body forces. For this approach, the discretization for
the resulting system of equations becomes greatly simplified, reducing to a set of linear advection equations that are
essentially independent across the spatial and velocity/internal energy domains and share a dependency only through
the nonlinear source term. However, to accurately resolve the underlying physics, it must be ensured that the resolution
is fine enough and the truncated velocity domain encompasses enough of the predominant behavior of the distribution
function. Therefore, the proper discretization of the velocity/internal energy domains becomes a critical factor in the
accuracy of the Boltzmann approach, and, as will be shown in Section 3.4, can also affect the numerical properties of
the scheme such as conservation and well-balancing.

2.4. Limiting Behavior
Although the Boltzmann–BGK model is a significantly more general approach than the equations governing fluid

flow in the continuum limit, it can be shown to recover these hydrodynamic equations in the asymptotic limit. The
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primary non-dimensional quantity characterizing the Boltzmann equation is the Knudsen number, defined as the ratio

𝐾𝑛 = 𝜆
𝐿ref

, (11)

where𝐿ref is the characteristic length scale and 𝜆 is the particle mean free path. In the limit as𝐾𝑛→ 0, the continuum
approximation can be regarded as valid, whereas for higher 𝐾𝑛, the flow enters the rarefied regime. The Knudsen
number can be related to Mach number 𝑀 and Reynolds number 𝑅𝑒 as

𝐾𝑛 =
√

𝛾𝜋
2
𝑀
𝑅𝑒
, (12)

where 𝛾 is the specific heat ratio. The Knudsen number can similarly be expressed in terms of the macroscopic flow
variables as

𝐾𝑛 =
√

𝛾𝜋
2

𝜇
𝜌𝑐𝑠𝐿ref

, (13)

where 𝜇 is the dynamic viscosity and 𝑐𝑠 =
√

𝛾𝑃∕𝜌 is the speed of sound.
In the low Knudsen number limit, the BGK approximation converges to the hydrodynamic limit governed by the

Euler/Navier–Stokes equations with the dynamic viscosity given as

𝜇 = 𝜏𝑃 , (14)

which defines the collision time in terms of the Knudsen number and the macroscopic flow quantities as

𝜏 = 𝐾𝑛
√

2
𝛾𝜋

𝜌𝑐𝑠𝐿ref
𝑃

=
√

2𝛾
𝜋
𝐾𝑛𝐿ref
𝑐𝑠

. (15)

In the low Mach number limit, the variations in pressure become small, such that for a fixed collision time, the dynamic
viscosity remains essentially constant. However, for higher Mach numbers where the pressure, and therefore the
viscosity, is expected to vary more strongly, the collision time can be set adaptively based on the macroscopic flow state
to recover a more physically consistent viscosity coefficient that varies as a function of temperature instead of pressure
[7]. This method is briefly explored in this work. Furthermore, due to the use of a single relaxation time, momentum
relaxation and thermal relaxation are assumed to be identical, such that the model recovers a unit Prandtl number
(𝑃𝑟 = 1), similarly to the assumption of the Reynolds analogy. Relatively simple modifications to the equilibrium
distribution function can be performed to recover other values for the Prandtl number [12, 13], but they are omitted in
this work.

3. Methodology
A description of the proposed numerical approach for discretizing the Boltzmann–BGK equation is presented in

this section, including details on the positivity-preserving high-order spatial discretization, the discretely conserva-
tive velocity and internal energy discretizations, boundary conditions for the system, and a guideline for the required
resolution levels. A schematic of this discretization is presented in Fig. 1.

3.1. Spatial Discretization
For a fixed location 𝐮0 in velocity space, the evolution of the particle distribution function is equivalent to a linear

advection equation with a nonlinear source term 𝑆. With a slight abuse of notation, we let 𝑓 (𝐱, 𝜁 , 𝑡) = 𝑓 (𝐱,𝐮0, 𝜁 , 𝑡)
for some arbitrary 𝐮0 ∈ Ω𝐮, which yields the transport equation

𝜕𝑡𝑓 (𝐱, 𝜁 , 𝑡) + 𝛁⋅𝐅(𝑓 ) = 𝑆, 𝐅(𝑓 ) = 𝐮0𝑓. (16)

Here, 𝐮0 represents some constant advection velocity and 𝐅(𝑓 ) is the flux. The left-hand side of this transport equation
is discretized using the flux reconstruction (FR) method of Huynh [11], a generalization of the nodal discontinuous
Galerkin method [14].
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Ω𝐱

Ω𝐱
𝑘

Ω𝐮

𝑢

𝑣

𝑟max

Figure 1: Schematic of a two-dimensional phase space discretization using an unstructured spatial domain Ω𝐱 with ℙ2
elements and a velocity domain Ω𝐯 with 𝑁𝑟 = 8, 𝑁𝜙 = 16 and no internal degrees of freedom. Circles denote the spatial
solution nodes (red), interface flux nodes (blue), and velocity space nodes (orange), respectively.

In this approach, the spatial domain Ω𝐱 is partitioned into𝑁𝑒 elements Ω𝐱
𝑘 such that Ω𝐱 =

⋃

𝑁𝑒
Ω𝐱
𝑘 and Ω𝐱

𝑖 ∩Ω
𝐱
𝑗 = ∅

for 𝑖 ≠ 𝑗, shown on the left-hand side of Fig. 1. Within each element Ω𝐱
𝑘, the distribution function is approximated by

a polynomial of the form

𝑓 (𝐱) =
𝑁𝑠
∑

𝑖=1
𝑓 (𝐱𝑠𝑖 )𝜙𝑖(𝐱), (17)

where 𝐱𝑠𝑖 ∈ Ω𝐱
𝑘 ∀ 𝑖 ∈ {1, ..., 𝑁𝑠} is a set of 𝑁𝑠 solution nodes and 𝜙𝑖(𝐱) is a set of nodal basis functions with the

property 𝜙𝑖(𝐱𝑠𝑗 ) = 𝛿𝑖𝑗 . The order of the approximation, represented by ℙ𝑝 for some order 𝑝, is defined as the maximal
order of 𝑓 (𝐱). Due to the linearity of the flux, the discontinuous flux 𝐅𝐷(𝐱) can be simply represented as

𝐅𝐷(𝐱) = 𝐮0𝑓 (𝐱). (18)

To allow communication between elements and to ensure consistency between the polynomial spaces of the solu-
tion and the divergence of the flux, the corrected flux is formed by amending the discontinuous flux with additional
correction terms.

𝐅𝐶 (𝐱) = 𝐅𝐷(𝐱) +
𝑁𝑓
∑

𝑖=1

[

𝐹 𝐼𝑖 − 𝐅𝐷(𝐱𝑓𝑖 ) ⋅ 𝐧𝑖
]

𝐠𝑖(𝐱). (19)

Here, 𝐱𝑓𝑖 ∈ 𝜕Ω𝐱
𝑘 ∀ 𝑖 ∈ {1, ..., 𝑁𝑓} is a set of 𝑁𝑓 interface flux nodes, 𝐧𝑖 is their associated outward-facing normal

vector, 𝐹 𝐼𝑖 is a common interface flux yet to be defined, and 𝐠𝑖 is the correction function associated with the given flux
node. These correction functions have the properties that

𝐧𝑖 ⋅ 𝐠𝑗(𝐱
𝑓
𝑖 ) = 𝛿𝑖𝑗 and

𝑁𝑓
∑

𝑖=1
𝐠𝑖(𝐱) ∈ 𝑅𝑇𝑝, (20)

where 𝑅𝑇𝑝 is the Raviart–Thomas space of order 𝑝. In this work, these correction functions are chosen such as to
recover the nodal discontinuous Galerkin approach [11, 14, 15].

At each interface flux point 𝐱𝑓𝑖 , there exists a pair of solution values (𝑓−
𝑖 , 𝑓

+
𝑖 ), denoting the inner value of the

solution (from the element of interest) and the outer value of the solution (from the face-adjacent element), respectively.
To ensure the correction direction of information propagation, the common interface flux 𝐹 𝐼𝑖 for systems of equations
is generally computed using a Riemann solver [16, 17] based on this solution pair and their associated normal vector.
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However, due to the point-wise equivalency of the Boltzmann equation to the linear advection equation, the common
interface flux can instead be computed using a simple upwinding approach as

𝐹 𝐼𝑖 =

{

𝑢𝑛𝑓−
𝑖 , if 𝑢𝑛 > 0

𝑢𝑛𝑓+
𝑖 , else,

(21)

where 𝑢𝑛 = 𝐮0 ⋅ 𝐧𝑖. With this discretization and an approximation of the source term 𝑆, the system can be evolved
using a suitable temporal integration approach.

3.2. Velocity Discretization
For the velocity discretization, the velocity space was truncated onto a finite domain Ω𝐮 ⊂ ℝ𝑚 and represented

nodally by 𝑁𝑣 discrete points, shown on the right-hand side of Fig. 1. As the distribution functions tend to have a
radially-symmetric nature in many cases, particularly for flows near equilibrium, it is convenient for𝑚 > 1 to represent
the space in polar/spherical coordinates as

[

𝑢
𝑣

]

=
[

𝑟 cos𝜙 + 𝑈0
𝑟 sin𝜙 + 𝑉0

]

and
⎡

⎢

⎢

⎣

𝑢
𝑣
𝑤

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑟 sin𝜓 cos𝜙 + 𝑈0
𝑟 sin𝜓 sin𝜙 + 𝑉0
𝑟 cos𝜓 +𝑊0

⎤

⎥

⎥

⎦

, (22)

where 𝑟 ∈ (0, 𝑟max] is the radial distance for some maximum radial extent 𝑟max, 𝜙 ∈ [0, 2𝜋) is the polar angle,
𝜓 ∈ [0, 𝜋) is the azimuthal angle, and 𝐔0 = [𝑈0, 𝑉0,𝑊0] is a vector of velocity offsets. The offsets were computed as
the component-wise average of the minima and maxima of the initial macroscopic velocities in the domain.

𝐔0 =
1
2

(

max
𝐱∈Ω𝐱

[𝐔(𝐱, 0)] + min
𝐱∈Ω𝐱

[𝐔(𝐱, 0)]
)

. (23)

The two primary parameters in the velocity space discretization are the radial extent of the domain and the distribu-
tion of the nodes. For the former, the choice of the radial extent plays a large role in the properties of the scheme – too
small of an extent can cause inaccurate predictions of the underlying physics due to the loss of information regardless
of the resolution of the discretization, whereas too large of an extent can degrade the efficiency of the discretization
while also restricting the maximum permissible explicit time step due to unnecessarily large particle velocities. As
described in Evans et al. [6], a standard approach is to prescribe the radial extent as some factor of the thermal ve-
locity (i.e., speed of sound). In this work, we take a similar approach but apply an a priori case-dependent metric to
automatically account for variation in the velocity distributions between problems. The radial extent is computed as

𝑟max = 𝑘max
𝐱∈Ω𝐱

[

𝑐𝑠(𝐱, 0)
]

+ 1
2
‖𝛿𝐔‖2, (24)

where 𝑐𝑠 =
√

𝛾𝑃∕𝜌 is the speed of sound and ‖𝛿𝐔‖2 is the component-wise maximum difference in the macroscopic
velocities in the domain, i.e.,

𝛿𝐔 = max
𝐱∈Ω𝐱

[𝐔(𝐱, 0)] − min
𝐱∈Ω𝐱

[𝐔(𝐱, 0)] . (25)

The parameter 𝑘 is chosen such that the contribution of the distribution function outside of the domain is negligible.
Therefore, 𝑘 is computed such that the relative magnitude of the distribution function outside of the velocity domain
compared to the maximum is of (𝜖𝐮), where 𝜖𝐮 is some small user-defined constant to be presented in Section 4. If
the distribution function within the domain is assumed to be initially Maxwellian, then 𝑘 can be analytically computed
as

𝑘 =
√

−2
𝛾
log(𝜖𝐮), (26)

which guarantees that the relative magnitude of the initial distribution function outside of velocity domain is at least a
factor of 𝜖𝐮 smaller than the maxima everywhere in the domain. Note that this choice of domain extent does not take
into account flows whose temperature/velocity are expected to drastically differ from their initial conditions. In those
scenarios, it may be necessary to verify the sensitivity of the solution on the domain extent a posteriori.

The distribution of nodes was chosen with polar/spherical integration in mind without a priori knowledge of the
expected distribution function. Since there should be no bias for any particular angle in the polar/azimuthal distribution,
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a constant spacing with equal weighting was used. For 𝑁𝜙 polar and 𝑁𝜓 azimuthal nodes, the nodal locations and
weights were given as

𝜙𝑖 = 𝑖Δ𝜙 ∀ 𝑖 ∈ {0, ..., 𝑁𝜙 − 1}, Δ𝜙 = 2𝜋
𝑁𝜙

, 𝑤𝜙𝑖 = Δ𝜙, (27)

𝜓𝑖 = (𝑖 + 1∕2)Δ𝜓 ∀ 𝑖 ∈ {0, ..., 𝑁𝜓 − 1}, Δ𝜓 = 𝜋
𝑁𝜓

, 𝑤𝜓𝑖 = Δ𝜓. (28)

respectively. Note that one end is open for the polar distribution and both ends are open for the azimuthal distribution to
account for periodicity in the respective components and to avoid coincident nodal points. For the radial distribution,
the Gauss-Legendre nodes 𝑥𝑔 and weights𝑤𝑔 were chosen as they provide satisfactory integration properties, avoid the
singularity at 𝑟 = 0, and cluster nodes at both the head and tail of the distribution. By applying a suitable normalization,
the radial nodal locations and weights can be given as

𝑟𝑖 = 𝑟max
𝑥𝑔𝑖 + 1

2
, 𝑤𝑟𝑖 =

𝑟max
2
𝑤𝑔𝑖 𝐽 (𝑟𝑖), (29)

where 𝐽 (𝑟𝑖) is the Jacobian of the transformation from polar/spherical coordinates to Cartesian coordinates. For a
velocity domain dimension 𝑚, the Jacobian is calculated as the surface area of an 𝑚-ball of radius 𝑟𝑖, e.g.,

𝐽 (𝑟𝑖) =

{

2𝜋𝑟𝑖, if 𝑚 = 2,
4𝜋𝑟2𝑖 , if 𝑚 = 3.

(30)

The dimensionality of the velocity space can then be calculated as 𝑁𝑣 = 𝑁𝑟𝑁𝜙 for 𝑚 = 2 and 𝑁𝑣 = 𝑁𝑟𝑁𝜙𝑁𝜓 for
𝑚 = 3.

In the case of 𝑚 = 1, the nodal distribution can be given across [−𝑟max, 𝑟max]. To maintain consistency with the
polar/spherical nodal distributions and to retain the clustering of the nodes around the head and tail, the nodal distri-
bution was computed as the concatenation of two Gauss-Legendre nodal distributions of size 𝑁𝑣∕2 on [−𝑟max, 0] and
[0, 𝑟max], respectively, which is identical to the two-dimensional case with 𝑁𝜙 = 2. As such, for the one-dimensional
cases in this work, 𝑁𝑣 is set to an even integer.

3.3. Internal Energy Discretization
For the internal energy discretization with 𝛿 > 0, a similar methodology as with the radial velocity discretization

was applied. The internal energy nodal locations and weights are given in terms of the normalized Gauss-Legendre
quadrature as

𝜁𝑖 = 𝜁max
𝑥𝑔𝑖 + 1

2
∀ 𝑖 ∈ {1, ..., 𝑁𝜁}, 𝑤𝑟𝑖 =

𝜁max
2
𝑤𝑔𝑖 . (31)

For the choice of 𝜁max, similar arguments as with 𝑟max can be made, but in this case, the upper bound does not have
an impact on the maximum permissible explicit time step. To calculate 𝜁max, a similar approach was taken as with
𝑟max by solving for a value such that the relative contribution of the internal energy distribution outside of the domain
is of (𝜖𝜁 ), where 𝜖𝜁 is again some small user-defined constant to be presented in Section 4. However, unlike for the
velocity domain, there does not exist a closed-form solution to this problem for general values of 𝛿, and therefore it
must be computed numerically. For several values of 𝛿 and 𝜖𝜁 , the ratio 𝜁max∕𝜃max was computed and presented in
Table 1.

𝛿 𝜖𝜁 = 10−2 𝜖𝜁 = 10−4 𝜖𝜁 = 10−6 𝜖𝜁 = 10−8 𝜖𝜁 = 10−10 𝜖𝜁 = 10−12 𝜖𝜁 = 10−14

2 4.605 9.210 13.816 18.421 23.026 27.631 32.236
3 5.453 10.380 15.175 19.916 24.628 29.320 33.999
4 6.471 11.667 16.627 21.488 26.295 31.067 35.815
5 7.656 13.065 18.165 23.133 28.026 32.870 37.680

Table 1: Numerically computed values of the relative domain extent 𝜁max∕𝜃max for varying values of the tolerance 𝜖𝜁 and
internal degrees of freedom 𝛿.
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3.4. Discrete Velocity Model
For the Boltzmann–BGK equation, accurate integration over the velocity and internal energy spaces is of key

importance to the properties of the numerical scheme such as conservation and well-balancing. However, issues can
arise when these infinite, continuous spaces are represented discretely. If 𝐌 is a discrete nodal integration operator
over Ω𝐮 × Ω𝜁 with strictly non-negative entries and 𝐱 represents some discrete nodal values, i.e.,

𝐌 (𝐱) ≈ ∫ℝ𝑑 ∫

∞

0
𝑥 d𝜁 d𝐮, (32)

then it can be seen that in the limit of infinite resolution and infinite domain size, the discrete integral will converge to-
wards the continuous integral if the integration operator is consistent. However, for finite approximations, this equality
does not hold in general, and therefore for some discrete equilibrium distribution function 𝐠,

𝐌 (𝝍 ⊗ 𝐠(𝐐)) ≠ 𝐐. (33)

Without this equality, the moments of the equilibrium distribution function do not yield the same conserved variables
used to create the equilibrium distribution function, which results in a scheme that is not conservative and is not
well-balanced (i.e., a constant solution in thermodynamic equilibrium does not remain constant nor in thermodynamic
equilibrium).

For nodal discretizations of the velocity and internal energy spaces, a standard approach is to discretize these
spaces with enough resolution such that the integration errors are negligible []. However, due to the high-dimensional
nature of the governing equations, this combinatorial explosion results in computational costs that severely limit the
applicability of these methods. As an alternative approach, Mieussens [7] introduced a discrete velocity model (DVM)
for the Boltzmann–BGK equation to address these issues. In the DVM approach, a discrete equilibrium distribution
function 𝐠 is sought that satisfies the discrete compatibility condition,

𝐌 (𝝍 ⊗ 𝐠) = 𝐌 (𝝍 ⊗ 𝐟 ) = 𝐐, (34)

and minimizes the discrete entropy 𝐻 ′,

𝐠 = arg min
𝐳

𝐻 ′(𝐳), 𝐻 ′(𝐳) = 𝐌 (𝐳 log 𝐳) . (35)

It was shown in Mieussens [7] that there exists a unique solution 𝐠′ to this problem, given by a modified Maxwellian
of the form

𝐠′ = 𝐠(𝐐′), (36)

where 𝐠(𝐐′) is a discrete Maxwellian corresponding to a modified set of conserved variables𝐐′ ≠ 𝐐 that converge to𝐐
in the limit of infinite resolution. However, in general, the values of 𝐐′ that satisfy the discrete compatibility condition
do not have a closed form solution, and therefore they must be found iteratively. This can be cast as a root-finding
problem, where 𝐐′ is the root of

𝐌
(

𝝍 ⊗ 𝐠(𝐐′)
)

−𝐐 = 0. (37)

Note that due to the dimensional reduction caused by the discrete integration operator, this nonlinear optimization
problem is only of the same dimension as 𝐐 (i.e., 𝑑 + 2), irrespective of the dimensionality of 𝐠. Furthermore, the
Jacobian 𝐉 of the root-finding problem can be analytically calculated, allowing for the use of efficient root-finding
algorithms such as Newton’s method with minimal overhead.

To simplify the presentation, we will use the same notation as Mieussens [7], where the equilibirum distribution
function is given with respect to a vector 𝜶(𝐐) = [𝛼1, 𝛼2, ..., 𝛼𝑑+2]𝑇 instead of 𝐐 as

𝑔(𝜶) = 𝛼1 exp

[

−𝛼2

( 𝑑
∑

𝑖=1

(

𝐮𝑖 − 𝛼𝑖+2
)2
)]

, (38)

where for 𝑑 = 3,
𝛼1 =

𝜌
(2𝜋𝜃)𝑑∕2

, 𝛼2 =
1
2𝜃
, 𝛼3 = 𝑈, 𝛼4 = 𝑉 , 𝛼5 = 𝑊 . (39)
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The Jacobian can then be given as
𝐉(𝜶) = 𝐌 (𝚯⊗ 𝝍 ⊗ 𝐠(𝜶)) , (40)

where
𝚯 = 𝜕𝑔(𝜶)

𝜕𝜶
1

𝑔(𝜶)
, (41)

such that for 𝑑 = 3,

𝚯1 =
1
𝛼1
, (42)

𝚯2 = −(𝐮 − 𝛼3)2 − (𝐯 − 𝛼4)2 − (𝐰 − 𝛼5)2 +
𝛿 − 4𝜁𝛼2

2𝛼2
, (43)

𝚯3 = 2𝛼2(𝐮 − 𝛼3), (44)
𝚯4 = 2𝛼2(𝐯 − 𝛼4), (45)
𝚯5 = 2𝛼2(𝐰 − 𝛼5). (46)

Note that due to the inclusion of the internal energy components, 𝚯 differs from the expression in Mieussens [7] by
the quantity

𝛿 − 4𝜁𝛼2
2𝛼2

=
𝜕𝑔𝜁 (𝜶)
𝜕𝜶

1
𝑔𝜁 (𝜶)

. (47)

For the case of 𝛿 = 0, this term is simply neglected as 𝑔𝜁 = 1. The root can then be found using Newton’s method
through the relation

𝜶𝑛+1 = 𝜶𝑛 − 𝐉(𝜶𝑛)−1
[

𝐌
(

𝝍 ⊗ 𝐠(𝜶𝑛)
)

−𝐐
]

, (48)

with the initial guess 𝜶0 taken as
𝜶0 = 𝜶(𝐐). (49)

In practice, since 𝜶0 is generally a good guess for even moderately resolved velocity and internal energy spaces, very
few iterations are required to bring the residual down to machine precision levels, with 1-2 iterations generally being
sufficient.

3.5. Positivity-Preserving Limiter
As the distribution function 𝑓 represents the number density of particles, it is inherently a non-negative quantity.

However, as the high-order spatial scheme does not preserve a maximum principle on its own, a distribution function
that is non-negative at 𝑡 = 0 may not remain non-negative for 𝑡 > 0. In addition to the fact that negative values of 𝑓
are non-physical, this effect can result in stability problems. It is trivial to show that if 𝑓 is strictly non-negative, the
resulting density and specific internal energy are guaranteed to be non-negative given a discrete integration operator
𝐌 with all positive values. The issue arises when 𝑓 is no longer non-negative – then the density or specific internal
energy values may become negative for which the equilibrium Maxwellian distribution is severely ill-behaved, causing
the scheme to diverge. Therefore, for the purpose of robustness, it is necessary to modify the spatial scheme to ensure
that 𝑓 remains non-negative.

In this work, this property is enforced similarly to the work of Jaiswal [10] by using the "squeeze" limiter of Zhang
and Shu [18]. Within each element Ω𝑘, the spatial average of the distribution function for each velocity and internal
energy node 𝐮𝑞 and 𝜁𝑟 is computed as

𝑓𝑞,𝑟 =
𝑁𝑠
∑

𝑖=1
𝑚𝑖𝑓𝑞,𝑟(𝐱𝑖), (50)

where the subscripts 𝑞, 𝑟 denote the 𝑞-th velocity node and 𝑟-th internal energy node, respectively, and 𝑚𝑖 are a set of
quadrature weights such that

𝑁𝑠
∑

𝑖=1
𝑚𝑖𝑧(𝐱𝑖) =

∫Ω𝑘 𝑧(𝐱) d𝐱

∫Ω𝑘 d𝐱
, (51)

for any polynomial 𝑧(𝐱) of degree ≤ 𝑝. In Zhang and Shu [18] and Zhang et al. [19], it was shown that the maximum
principle is preserved for 𝑓 under a standard CFL condition with strong-stability preserving temporal integration and
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an upwind interface flux. Due to the positivity of the equilibrium distribution function 𝑔 in the source term of the
Boltzmann–BGK equation, this property can be extended to the element-wise mean of high-order flux reconstruction
approximations of the Boltzmann–BGK equation under the condition Δ𝑡 ≤ 𝜏 as this results in a convex combination
of two positive states 𝑔 and 𝑓 . With the maximum principle property on 𝑓 , a conservative, positivity-preserving, and
formally high-order reconstruction of 𝑓 can be given as

𝑓𝑞,𝑟(𝐱𝑖) = 𝑓𝑞,𝑟(𝐱𝑖) + 𝛽𝑞,𝑟
[

𝑓𝑞,𝑟(𝐱𝑖) − 𝑓𝑞,𝑟
]

, (52)

where

𝛽𝑞,𝑟 = min

[

|

|

|

|

|

|

𝑓𝑞,𝑟
𝑓𝑞,𝑟 − 𝑓min

𝑞,𝑟

|

|

|

|

|

|

, 1

]

and 𝑓min
𝑞,𝑟 = min𝑓𝑞,𝑟(𝐱𝑖) ∀ 𝑖 ∈ {1, ..., 𝑁𝑠}. (53)

This limiting is performed on a per-node basis in the velocity and internal energy spaces prior to each evaluation of the
time derivative of the distribution function. Note that unlike some systems where an arbitrarily small positive constant
must be given as a minimum to prevent numerical complications (e.g., Euler equations), 𝑓 is allowed to attain a zero
value, such that there is no need to prescribe an arbitrary minimum.

3.6. Discontinuity Capturing
Although the limiting approach in Section 3.5 is guaranteed to preserve the positivity of density and internal energy,

the use of a high-order spatial discretization may still result in the introduction of spurious oscillations in the vicinity
of discontinuities without proper treatment. For the Boltzmann equation, this is generally less of a problem as the
discontinuous structures can in fact be resolved with some finite thickness at the particle mean free path level [9].
However, if the numerical resolution is not fine enough such that these structures are resolved, they can behave as
discontinuities which can lead to numerical instabilities in the solution. For many high-order numerical schemes for
both continuum gas dynamics and kinetics, it is commonplace to modify the parameters of the system in the vicinity
of discontinuities such that they can be resolved on the order of the mesh scale (e.g., artificial viscosity [9]). However,
as the focus of this work is on directly resolving flow physics, we instead pose some resolution requirements of the
scheme such that the structures can be resolved without any additional treatment.

For a given numerical resolution, there exists some maximal mesh scale ℎmax such that features of a smaller scale
cannot be resolved. For a high-order discontinuous spectral element method, computing this scale is more ambiguous
due to the presence of multiple solution points within an element and inhomogeneity in the distribution of solution
points. In this work, we compute this scale as the maximal distance between any solution point and its Voronoi
neighbors within the element (see Section 2.4 of Guermond et al. [20]). To resolve "discontinuous" structures, it is
necessary for their thickness Δ to be greater than this maximal mesh scale, i.e.,

Δ ≥ ℎmax. (54)

To form an a priori estimate of this thickness, we follow the methodology of Xiao [9], where the thickness is calculated
in terms of the molecular mean free path 𝜆 as

Δ ∼ 10𝜆, (55)
using the relation that the thickness of a weak shock wave is on the order of 10 mean free paths. Note that for strong
shocks or other discontinuities, this relation may vary but it is generally of the same order of magnitude [21]. A mesh
Knudsen number may then be calculated as

𝐾𝑛ℎ = 𝜆
ℎmax

=
𝐾𝑛𝐿0
ℎmax

. (56)

From Eq. (54) and Eq. (55), an approximate resolution requirement can be posed in terms of this mesh Knudsen number
as

𝐾𝑛ℎ ≥ 1∕10. (57)
In practice, this requirement is checked a priori based on the initial Knudsen number but may also be observed over
the course of the simulation based on the local mesh scale and local Knudsen number. Note that this requirement
does not guarantee that the resulting scheme will be monotone in the vicinity of discontinuities, particularly due to
the ambiguity in calculating ℎmax and the shock thickness, but it does form a suitable estimate such that the predicted
results are generally well-behaved.
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3.7. Boundary Conditions
The enforcement of boundary conditions in the solution of the Boltzmann equation is nontrivial, and there exist a

variety of approaches for dealing with this problem. In this work, the boundary conditions are weakly enforced via the
standard FR approach of forming a boundary state 𝑓+(𝐮) that is used in conjunction with the interior solution values
𝑓−(𝐮) to calculate the interface flux at the boundary. As the interface flux is computed using an upwinding approach,
the boundary state can only affect the incoming particles at the boundary while the outgoing particles are essentially
left unmodified.

The presentation of these boundary conditions will generally follow the work of Evans et al. [6]. The most straight-
forward boundary condition to enforce is a Neumann-type boundary condition, which can be implemented by simply
setting the boundary state as

𝑓+(𝐮) = 𝑓−(𝐮). (58)
This boundary condition essentially assumes that the boundary has no effect on the solution, such that the correction
terms associated with the interface flux are zero. For Dirichlet-type boundary conditions, the implementation becomes
slightly more involved. It can be assumed in most scenarios that the boundary state can be represented in terms of the
macroscopic variables 𝐐. The simplest case for this boundary condition is to assume that the boundary state is in
thermodynamic equilibrium, such that the distribution function can be represented as a Maxwellian. Therefore, the
boundary state can be set as

𝑓+(𝐮) = 𝑔(𝐐′), (59)
where 𝐐′ is the modified Maxwellian used to ensure a conservative scheme. Since the boundary state is typically fixed,
this modified Maxwellian can be pre-computed.

Wall boundary conditions for the Boltzmann equation are significantly more complex, and in most cases, it is still
an open problem as to what the proper approach is for representing interactions of the particles with the wall. Some
theoretical development on wall boundary conditions for the Boltzmann equation is presented in Williams [22], and
numerical applications of various approaches for wall boundary conditions are shown in Evans et al. [6]. The focus
of this work is strictly on specular wall boundary conditions for convex surfaces which model the wall interaction as
a reflection of the incoming particles, mimicking an effect that is somewhat similar to a slip-wall boundary condition
for continuum approximations. For this boundary condition, the boundary state is set as

𝑓+(𝐮) = 𝑓−(𝐮 − 2(𝐮 ⋅ 𝐧)𝐧), (60)

where 𝐧 is the outward-facing normal direction of the wall. In general, the implementation of this boundary condition
requires interpolation in velocity space, but for simple geometries, the implementation can be vastly simplified by use
of a velocity space that is symmetric with respect to the wall-tangent directions.

4. Implementation
The proposed scheme was implemented within PyFR [23], a high-order flux reconstruction solver that can target

massively-parallel CPU and GPU computing architectures, and simulations were performed on up to 40 NVIDIA
V100 GPUs. For the spatial discretization, the solution nodes were placed on the Gauss–Lobatto quadrature nodes for
tensor-product elements and 𝛼-optimized points [14] for simplex elements, but any closed nodal set would essentially
be identical due to the linearity of the flux. Temporal integration was performed via an explicit, fourth-order, four-stage
Runge–Kutta scheme. Although the positivity property of the element-wise mean required by the positivity-preserving
limiter theoretically requires strong stability preserving temporal integration, this is almost never an issue in practice,
and it is therefore advantageous to utilize more efficient temporal schemes. The time step was chosen as the minima of
the collision time scale 𝜏 and the maximum allowable time step by the Courant—Friedrichs—Lewy (CFL) condition
Δ𝑡𝐶𝐹𝐿, i.e.,

Δ𝑡 = min
(

𝜏,Δ𝑡𝐶𝐹𝐿
)

, (61)
where Δ𝑡𝐶𝐹𝐿 was computed using the estimate of Cockburn and Shu [24] as

Δ𝑡𝐶𝐹𝐿 = 𝐶𝐹𝐿
2𝑝 + 1

ℎmin
𝑐max

. (62)

Here, 𝐶𝐹𝐿 = 0.5 is the chosen CFL number, 𝑝 is the order of the scheme, ℎmin is the minimum element edge length
in the domain, and 𝑐max = 𝑟max is the maximum particle velocity in the domain. For certain problems, such as ones
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in the zero Mach number limit or ones that converge to a steady state, it may be advantageous to utilize implicit time
stepping due to the stiffness of the source term. However, as this work is primarily focused on problems tending
towards direct numerical simulation, where the time step limit imposed by the source term usually does not drastically
differ from the CFL-based time step, explicit time stepping was deemed preferable due to its significant benefits in
terms of computational efficiency on massively-parallel GPU computing architectures. For the numerical experiments
in this work, the time step was generally limited by the CFL condition except for cases in the continuum limit (i.e., low
Mach number, high Reynolds number flows).

To simplify the presentation, the initial conditions are given in terms of the primitive variables 𝐪 = [𝜌,𝐔, 𝑃 ]𝑇 .
The initial distribution function was set as the modified Maxwellian corresponding to the initial macroscopic variables
through 5 iterations of the DVM, after which the DVM residual was generally on the order of machine precision.
Throughout the simulations, a fixed number of iterations (2) was used for the DVM, which will be later shown to be
sufficient to ensure conservation of the macroscopic flow variables. The extent of the velocity domain was computed
as presented in Section 3.2 and the velocity tolerance was set as 𝜖𝐮 = 10−15 as the estimated extent did not vary
strongly with the tolerance (e.g., a velocity tolerance of 𝜖𝐮 = 10−6 would only decrease the extent by 37%). However,
for cases with internal degrees of freedom, since the extent of the internal energy domain varied more strongly with
the internal energy tolerance (as shown in Table 1), the internal energy tolerance was instead set as 𝜖𝜁 = 10−6. The
effects of this truncation will be explored in Section 5. The velocity discretization was generally chosen with the goal
of minimizing the necessary resolution, particularly for larger-scale problems, usually through qualitative convergence
studies performed by incrementally increasing the resolution and comparing with established results.

Unless otherwise stated, the Knudsen number was computed with respect to a unit reference length and the discrete
maximum of the initial wavespeed in the domain, and the velocity dimension 𝑚 was set equal to the spatial dimension
𝑑. Furthermore, the collision time 𝜏 was set as constant based on the Knudsen number in almost all scenarios, ex-
cept for problems where a variable collision time model is explicitly defined. For some problems, comparisons were
made between the Boltzmann–BGK approach and a standard Navier–Stokes approach implemented within an identical
codebase. The Navier–Stokes results were computed using the HLLC [25] Riemann solver for the inviscid fluxes and
the BR2 approach of Bassi and Rebay [26] for the viscous fluxes, and a unit Prandtl number and identical specific heat
ratio was used for consistency with the Boltzmann–BGK approach.

5. Results
5.1. Smooth Pulse Propagation

As an initial evaluation of the accuracy of the proposed scheme, the propagation of a smooth density pulse is
considered. The problem is defined on a one-dimensional periodic domain Ω𝑥 = [0, 1] and the initial conditions are
given as

𝐪(𝑥, 0) =
⎡

⎢

⎢

⎣

𝜌
𝑈
𝑃

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 + exp
(

−𝛽 (𝑥 − 0.5)2
)

1
1

⎤

⎥

⎥

⎦

, (63)

where 𝛽 = 100 is a parameter controlling the pulse width. The problem was investigated with 𝐾𝑛 = 10−1, 10−2,
and 10−3 based on a unit characteristic length and the maximum wavespeed in the domain, with an example of the
resulting density profiles shown in Fig. 2. Additionally, the effects of including internal degrees of freedom were
explored. Given a single velocity dimension (𝑚 = 1), a comparison was made between the monatomic case (𝛿 = 0,
𝛾 = 3) and the polyatomic case mimicking a diatomic molecule in three dimensions (𝛿 = 4, 𝛾 = 1.4).

5.1.1. Spatial Convergence
To verify the high-order spatial accuracy of the flux reconstruction approach, the convergence of the density error

was evaluated. After one flow-through of the domain (𝑡 = 1), the 𝐿∞ norm of the density error was calculated as

𝜖𝜌,∞ = ‖𝜌(𝑥, 𝑡) − 𝜌ref (𝑥, 𝑡)‖∞,Ω𝑥 , (64)

where the extremum was computed on the discrete solution nodes and 𝜌ref is the reference density computed with
a highly-resolved numerical scheme. For this case, the reference simulation was performed using a ℙ5 scheme with
100 elements. To isolate the effects of the spatial discretization error from the velocity discretization error, a very
high resolution, 𝑁𝑣 = 128, was used for the velocity space for all tests with 𝑁𝜁 = 𝑁𝑣 for the polyatomic case. The
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Figure 2: Density profile of the smooth pulse propagation problem at 𝑡 = 1 with varying Knudsen numbers computed
using a ℙ5 scheme with 20 elements, the discrete velocity model (DVM) with 𝑁𝑣 = 32, and 𝛿 = 0 (𝛾 = 3).

convergence of the density error for𝐾𝑛 = 10−1, 10−2, and 10−3 is shown in Table 2, Table 3, and Table 4, respectively.
For almost all cases, the expected theoretical 𝑝+1 convergence rate was recovered or exceeded, although some variation
is expected due to the lack of an analytic solution. These results confirm the high-order spatial accuracy afforded by
the flux reconstruction scheme.

𝛿 = 0 (𝛾 = 3) 𝛿 = 4 (𝛾 = 1.4)

Δ𝑥 ℙ2 ℙ3 ℙ4 ℙ5 ℙ2 ℙ3 ℙ4 ℙ5

1∕4 3.37 × 10−2 1.97 × 10−3 1.20 × 10−4 6.61 × 10−5 3.76 × 10−3 4.91 × 10−4 1.98 × 10−4 2.96 × 10−5
1∕8 7.03 × 10−4 5.42 × 10−5 2.61 × 10−6 7.24 × 10−8 7.46 × 10−4 5.55 × 10−5 2.80 × 10−6 1.59 × 10−7
1∕12 4.52 × 10−5 1.49 × 10−6 5.51 × 10−8 1.69 × 10−9 2.22 × 10−4 1.19 × 10−5 4.67 × 10−7 1.88 × 10−8
1∕16 1.84 × 10−5 4.75 × 10−7 1.10 × 10−8 2.81 × 10−10 9.68 × 10−5 3.91 × 10−6 1.05 × 10−7 3.61 × 10−9
1∕20 9.04 × 10−6 1.91 × 10−7 3.61 × 10−9 7.27 × 10−11 5.00 × 10−5 1.63 × 10−6 3.64 × 10−8 9.58 × 10−10

RoC 5.26 5.98 6.71 8.63 2.70 3.55 5.31 6.35

Table 2: Convergence of the 𝐿∞ norm of the density error with respect to mesh resolution Δ𝑥 and varying approximations
orders for the smooth pulse propagation problem with 𝐾𝑛 = 10−1. Rate of convergence shown on bottom.

𝛿 = 0 (𝛾 = 3) 𝛿 = 4 (𝛾 = 1.4)

Δ𝑥 ℙ2 ℙ3 ℙ4 ℙ5 ℙ2 ℙ3 ℙ4 ℙ5

1∕4 1.43 × 10−1 1.63 × 10−2 3.33 × 10−3 1.20 × 10−3 3.06 × 10−2 5.36 × 10−3 5.93 × 10−3 5.28 × 10−4
1∕8 1.59 × 10−2 9.56 × 10−4 1.30 × 10−4 1.15 × 10−5 5.92 × 10−3 4.87 × 10−4 5.59 × 10−5 4.10 × 10−6
1∕12 2.85 × 10−3 1.82 × 10−4 1.54 × 10−5 1.34 × 10−6 1.88 × 10−3 9.30 × 10−5 6.53 × 10−6 4.08 × 10−7
1∕16 9.67 × 10−4 5.76 × 10−5 3.90 × 10−6 2.88 × 10−7 8.19 × 10−4 2.94 × 10−5 1.68 × 10−6 9.55 × 10−8
1∕20 4.55 × 10−4 2.36 × 10−5 1.21 × 10−6 8.12 × 10−8 4.33 × 10−4 1.19 × 10−5 5.80 × 10−7 2.93 × 10−8

RoC 3.63 4.06 4.93 5.92 2.65 3.81 5.72 6.07

Table 3: Convergence of the 𝐿∞ norm of the density error with respect to mesh resolution Δ𝑥 and varying approximations
orders for the smooth pulse propagation problem with 𝐾𝑛 = 10−2. Rate of convergence shown on bottom.

5.1.2. Velocity Convergence
To evaluate the effects of the velocity/internal energy discretization as well as the discrete velocity model on the

solution, the density error was similarly analyzed while varying the velocity/internal energy resolution. To isolate the
effects of the velocity/internal energy discretization error from the spatial discretization error, a highly-resolved ℙ5
scheme with 20 elements was used for all tests. The 𝐿∞ norm of the density error with respect to the resolution 𝑁𝑣,
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𝛿 = 0 (𝛾 = 3) 𝛿 = 4 (𝛾 = 1.4)

Δ𝑥 ℙ2 ℙ3 ℙ4 ℙ5 ℙ2 ℙ3 ℙ4 ℙ5

1∕4 3.54 × 10−1 1.32 × 10−1 4.69 × 10−2 1.57 × 10−2 5.07 × 10−2 9.73 × 10−3 5.09 × 10−3 1.52 × 10−3
1∕8 1.03 × 10−1 1.24 × 10−2 2.16 × 10−3 2.59 × 10−4 6.34 × 10−3 3.75 × 10−4 2.97 × 10−5 6.76 × 10−6
1∕12 3.25 × 10−2 1.98 × 10−3 2.25 × 10−4 1.83 × 10−5 2.10 × 10−3 7.56 × 10−5 4.11 × 10−6 6.39 × 10−7
1∕16 1.08 × 10−2 6.20 × 10−4 4.76 × 10−5 4.53 × 10−6 9.09 × 10−4 1.95 × 10−5 1.16 × 10−6 2.68 × 10−7
1∕20 4.37 × 10−3 2.32 × 10−4 1.76 × 10−5 1.39 × 10−6 4.62 × 10−4 8.86 × 10−6 5.24 × 10−7 1.24 × 10−7

RoC 2.71 3.96 4.98 5.85 2.90 4.37 5.71 5.89

Table 4: Convergence of the 𝐿∞ norm of the density error with respect to mesh resolution Δ𝑥 and varying approximations
orders for the smooth pulse propagation problem with 𝐾𝑛 = 10−3. Rate of convergence shown on bottom.

𝑁𝜁 after one flow-through of the domain is shown in Fig. 3 for𝐾𝑛 = 10−1, 10−2, and 10−3 with and without the DVM
and internal degrees of freedom, respectively. For𝐾𝑛 = 10−1, the results of the DVM and the standard approach were
essentially identical over the resolution range. However, for smaller𝐾𝑛, the difference between the standard approach
and the DVM became more evident. For 𝐾𝑛 = 10−2 and 𝐾𝑛 = 10−3, the use of the DVM resulted in 1-3 orders of
magnitude lower error than the standard approach over a large range of resolution, with this disparity becoming more
evident with lower 𝐾𝑛. Furthermore, the use of the DVM sometimes resulted in a lower minimal stable resolution
requirement for the velocity/internal energy spaces, with an example being the case of 𝐾𝑛 = 10−3 where the DVM
was stable even with lowest resolution (𝑁𝑣, 𝑁𝜁 = 12) while the standard approach diverged for 𝑁𝑣, 𝑁𝜁 < 20.
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Figure 3: Convergence of the 𝐿∞ norm of the density error with respect to velocity space resolution 𝑁𝑣 computed using
a ℙ5 scheme with 20 elements and 𝐾𝑛 = 10−1 (left), 𝐾𝑛 = 10−2 (middle), and 𝐾𝑛 = 10−3 (right) with and without the
discrete velocity model (DVM). Results for 𝛿 = 0 (𝛾 = 3) and 𝛿 = 4 (𝛾 = 1.4) shown in black and red, respectively. Diverged
solutions not plotted.

To verify the conservation properties of the DVM in comparison to the standard approach, the mass conservation
error, defined as

𝜖𝑚 =
|

|

|

|

∫Ω𝑥
𝜌(𝑥, 𝑡) d𝑥 − ∫Ω𝑥

𝜌(𝑥, 0) d𝑥
|

|

|

|

, (65)

was similarly analyzed after one flow-through of the domain. The convergence of this mass conservation error with
respect to the velocity/internal energy resolution is shown in Fig. 4 for 𝐾𝑛 = 10−1, 10−2, and 10−3. In all cases, with
just two iterations of the DVM, the mass conservation error was essentially negligible regardless of the resolution,
varying from 10−13 to 10−10 across the various problem setups. However, without the DVM, the conservation error
was significant, particularly at lower resolutions where errors of (10−2) and larger were observed. For the monatomic
case, where the domain bounds were chosen such that the values of the distribution function outside of the domain
were essentially negligible (𝜖𝐮), the conservation error without the DVM did eventually converge to the DVM results
with increasing resolution, but the resolution required to match the DVM results was significantly larger, such that
the velocity/internal energy discretization required a factor of 3−4 times as many nodes per dimension. In contrast,
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for the polyatomic case, the bounds of the internal energy domain were chosen such that value of the distribution
function outside of it was small but non-negligible (𝜖𝜁 ) to decrease the resolution requirements. In this case, the mass
conservation error with the DVM was still negligible, but without the DVM, the error was significant and did not
converge with increasing resolution. This effect in the standard approach can be attributed to the error introduced by
truncating the infinite domain. As a result, the DVM offers even more advantages in the overall computational cost as
it allows for the use of smaller domain sizes which can be better resolved for the same number of discrete nodes.
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Figure 4: Convergence of the mass conservation error with respect to velocity space resolution 𝑁𝑣 computed using a ℙ5
scheme with 20 elements and 𝐾𝑛 = 10−1 (left), 𝐾𝑛 = 10−2 (middle), and 𝐾𝑛 = 10−3 (right) with and without the discrete
velocity model (DVM). Results for 𝛿 = 0 (𝛾 = 3) and 𝛿 = 4 (𝛾 = 1.4) shown in black and red, respectively. Diverged
solutions not plotted.

5.2. Double Expansion Wave
A double expansion wave was subsequently considered as a verification of the entropy-satisfying and positivity-

preserving properties of the scheme. This problem, known as the 123 problem (or Test 2) in Toro [27], is solved on
the domain Ω𝑥 = [0, 1] with the initial conditions

𝐪(𝑥, 0) =
{

𝐪𝐿, if𝑥 ≤ 0.5,
𝐪𝑅, else,

where 𝐪𝐿 =
⎡

⎢

⎢

⎣

1
−2
0.4

⎤

⎥

⎥

⎦

, 𝐪𝑅 =
⎡

⎢

⎢

⎣

1
2
0.4

⎤

⎥

⎥

⎦

. (66)

The initial discontinuous state develops into two outrunning expansion waves with a low density/pressure region in
the center. The resulting symmetric wave structure is difficult to resolve, particularly in the center region, with even
robust first-order numerical schemes for gas dynamics frequently failing [27].

The problem was simulated using a ℙ3 scheme with 𝑁𝑒 = 100 elements and 𝑁𝑣 = 𝑁𝜁 = 32 with Dirichlet
boundary conditions. For consistency with the original problem setup, the polyatomic case was chosen, with 𝛿 = 4
such that 𝛾 = 1.4. The predicted density and specific internal energy 𝑒 = 𝜃∕(𝛾 − 1) at 𝑡 = 0.15 is shown in Fig. 5
and Fig. 6 for 𝐾𝑛 = 10−2 and 𝐾𝑛 = 10−3, respectively, based on the initial macroscopic state. For both Knudsen
numbers, the density profile was well-resolved even in the low-density center region, with convergence to the exact
Euler results qualitatively observed with decreasing𝐾𝑛 and near identical behavior with and without the DVM. For the
specific internal energy profile, which is generally much more difficult to accurately resolve in this region as errors are
amplified by the low density and pressure, the predicted results showed good agreement in the decreasing 𝐾𝑛 limit on
the exterior of the expansion waves. However, the center region shows a spike in the internal energy profile, indicative
of spurious physical entropy generation in the center. This effect is quite common for gas dynamics solvers, with
almost all schemes producing this energy spike (see Toro [27], Section 6.4). Interestingly enough, we also observe
this effect when solving the Boltzmann equation, which should, in theory, be entropy-satisfying.

To discern the cause of this spurious entropy generation, we explore several possibilities. One may attribute this
problem to the effects of a non-zero Knudsen number, but Fig. 5 and Fig. 6 show that although the profiles in the
expansion region tend toward the Euler results with decreasing 𝐾𝑛, the magnitude of the spike actually increases
with decreasing 𝐾𝑛. Another explanation may be that this is an artifact of the mesh resolution, which is generally
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Figure 5: Density (left) and specific internal energy (right) profile for the double expansion wave problem at 𝑡 = 0.15
with 𝐾𝑛 = 10−2 computed using a ℙ3 scheme with 100 elements, 𝑁𝑣 = 𝑁𝜁 = 32, and 𝛿 = 4 (𝛾 = 1.4). Results shown in
comparison to the exact Euler profiles.
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Figure 6: Density (left) and specific internal energy (right) profile for the double expansion wave problem at 𝑡 = 0.15
with 𝐾𝑛 = 10−3 computed using a ℙ3 scheme with 100 elements, 𝑁𝑣 = 𝑁𝜁 = 32, and 𝛿 = 4 (𝛾 = 1.4). Results shown in
comparison to the exact Euler profiles.

the case for gas dynamics solvers but would certainly raise questions about the entropy-satisfying properties of the
proposed scheme. To explore this possibility, the problem was solved on a progression of meshes with increasing
resolution, both with a fixed 𝐾𝑛 = 10−3 and with a proportionally decreasing 𝐾𝑛 = ℎ∕10, where ℎ = 1∕𝑁𝑒 is the
mesh size. The predicted specific internal energy profiles for these cases are shown in Fig. 7. It can be seen that for
the decreasing 𝐾𝑛 case (i.e., constant mesh Knudsen number), the profiles converge to the Euler results, but the spike
does not proportionally decrease. In contrast, the fixed 𝐾𝑛 case (e.g., decreasing mesh Knudsen number) shows a
significant decrease in the energy spike with increasing resolution, indicating that the problem is more associated with
the mesh Knudsen number than the resolution itself.

We posit that this effect is related to a violation of the resolution requirements proposed in Section 3.6. Although
it may seem that for the given parameters, the resolution condition in Eq. (57) is easily satisfied, the assumptions
posed in Section 3.6 are not valid for the initial conditions — regardless of the Knudsen number of the problem, the
initial discontinuity thickness given by Eq. (66) is exactly zero. Therefore, the actual mesh Knudsen number for the
initial state is zero, such that the scales are not properly resolved and Eq. (57) is not actually satisfied. This issue
is exacerbated by the stationary nature of the center region in symmetric Riemann problems, which does not benefit
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Figure 7: Convergence of the specific internal energy profile with respect to mesh resolution 𝑁𝑒 for the double expansion
wave problem at 𝑡 = 0.15 computed using a ℙ3 scheme, 𝑁𝑣 = 𝑁𝜁 = 32 with the discrete velocity model, and 𝛿 = 4
(𝛾 = 1.4). Left: Discontinuous initial conditions (Δ = 0). Right: Continuous initial conditions (Δ ∼ ℎ). Results shown in
comparison to the exact Euler profiles.

from “correcting” effects such as compression in shocks or numerical dissipation in traveling contact discontinuities.
To verify this claim, the previous mesh convergence study was run again utilizing the case of a decreasing Knudsen
(𝐾𝑛 = ℎ∕10), but the discontinuous original initial condition was modified to a continuous initial condition with a
finite discontinuity thickness Δ. The modified initial velocity profile was chosen as

𝑈 (𝑥, 0) =
𝑈𝑅 − 𝑈𝐿

2
tanh

[ 1
ℎ
(𝑥 − 0.5)

]

+
𝑈𝑅 + 𝑈𝐿

2
= 2 tanh

[ 1
ℎ
(𝑥 − 0.5)

]

, (67)

such that the discontinuity thickness Δ is of (ℎ) which satisfies the resolution requirements at 𝑡 = 0 and recovers
the Euler equations in the 𝐾𝑛 → 0, ℎ → 0 limit. A comparison of the predicted specific internal energy profile for
the discontinuous and continuous initial conditions is shown in Fig. 8. As it can clearly be seen, modifying the initial
conditions to be consistent with the system in question completely removes the spurious spike in specific internal
energy (and consequently, physical entropy) while converging towards the Euler results in the 𝐾𝑛 → 0, ℎ → 0 limit.
Note that the modification was only necessary due to a pathological test case known to be sensitive to this issue — for
practical purposes (and for the remaining numerical experiments in this work), the modification to the initial conditions
was neglected as its effect was generally negligible in comparison to numerical approximation errors.

5.3. Normal Shock Structure
As a verification of the proposed method for more complex flow regimes and a comparison of the Boltzmann-

BGK method to continuum approaches, the structure of a normal shock in argon was computed over a range of Mach
numbers. For this problem, the domain is set as Ω𝑥 = [−25, 25] and the initial conditions are given as

𝐪(𝑥, 0) =
{

𝐪𝐿, if𝑥 ≤ 0,
𝐪𝑅, else,

where 𝐪𝐿 =
⎡

⎢

⎢

⎣

1
𝑀

√

𝛾
1

⎤

⎥

⎥

⎦

. (68)

The left-hand state 𝐪𝐿 is given in terms of the incoming (upstream) Mach number 𝑀 , and the right-hand state 𝐪𝑅 can
be computed through the Rankine–Hugoniot conditions as

𝜌𝑅
𝜌𝐿

= (𝛾 + 1)𝑀2

(𝛾 − 1)𝑀2 + 2
,

𝑈𝑅
𝑈𝐿

= (𝛾 − 1)𝑀2 + 2
(𝛾 + 1)𝑀2 , and

𝑃𝑅
𝑃𝐿

= 2𝛾𝑀2 − (𝛾 − 1)
𝛾 + 1

. (69)

For comparison with experimental data and other numerical approaches, the specific heat ratio 𝛾 was set as 5∕3 (i.e.,
𝛿 = 2) to mimic a monatomic molecule (argon) in three dimensions. The quantity of interest for this problem is the
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Figure 8: Convergence of the specific internal energy profile with respect to mesh resolution 𝑁𝑒 and 𝐾𝑛 = ℎ∕10 for the
double expansion wave problem at 𝑡 = 0.15 computed using a ℙ3 scheme, 𝑁𝑣 = 𝑁𝜁 = 32 with the discrete velocity model,
and 𝛿 = 4 (𝛾 = 1.4). Left: Discontinuous initial conditions (Δ = 0). Right: Continuous initial conditions (Δ ∼ ℎ). Results
shown in comparison to the exact Euler profiles.

inverse ratio of the shock thickness Δ, defined as

Δ =
𝜌𝑅 − 𝜌𝐿

max
[

𝜕𝑥𝜌(𝑥)
] , (70)

relative to the upstream mean free path 𝜆𝐿.
Since the shock structure is highly sensitive to the transport coefficients, the use of a constant collision time 𝜏, for

which the viscosity would depend on pressure, can result in inaccurate predictions. One can instead adapt the collision
time based on the solution to recover more physically consistent transport coefficients similarly to the approach of
Mieussens [7] as

𝜏(𝐐) = 𝜏𝑟𝑒𝑓
𝜌𝑟𝑒𝑓𝜃1−𝜔𝑟𝑒𝑓

𝜌𝜃1−𝜔
. (71)

Here, 𝜔 refers to the viscosity law exponent of the gas, taken as 𝜔 = 0.81 for argon, and the reference quantities are
taken from the incoming macroscopic state𝐐𝐿. The reference collision time 𝜏𝑟𝑒𝑓 was computed by setting the Knudsen
number as 𝐾𝑛 = 1 based on a unit reference length and the incoming macroscopic state 𝐐𝐿, such that 𝜆𝐿 = 𝐾𝑛.

The shock structure was computed using a ℙ3 scheme with 100 elements with𝑁𝑣 = 𝑁𝜁 = 32 which allows for the
structure to be fully resolved based on the Knudsen number and the spatial resolution. The boundary conditions were
set to Dirichlet on both ends. To compute the shock thickness, the corrected gradients were used, with the common
interface solution taken as the mean of the interior and exterior values similarly to the BR1 approach of Bassi and
Rebay [28]. The solution was advanced to a final time of 𝑡 = 100, after which the 𝐿∞ norm of the temporal residual
was generally converged to values less than 10−5. The computed inverse thickness ratio 𝜆𝐿∕Δ is shown in Fig. 9 over
a range of Mach numbers in comparison to the Navier–Stokes results of Mieussens [7] and experimental results of
Alsmeyer [21], Linzer and Hornig [29], and Camac [30]. The predictions of the present Boltzmann–BGK approach
were in much better agreement with the experimental data than the Navier–Stokes results, properly predicting both
the critical Mach number where this inverse thickness ratio is at its maxima and the decay of the ratio with increasing
Mach number. The predicted inverse thickness ratio was generally on the higher end of the experimental data but still
within the range of uncertainty between the various experiments.

For a more direct comparison of the shock structures, the predicted normalized density profiles (𝜌∗) as well as
normalized velocity (𝑈∗) and pressure (𝑃 ∗) profiles at two Mach numbers, 𝑀 = 3.8 and 𝑀 = 9.0, were compared to
the experimental density profiles of Alsmeyer [21] and the direct simulation Monte Carlo (DSMC) density profiles of
Bentley and Greendyke [31] (computed using the method of Bird [32]) in Fig. 10. At 𝑀 = 3.8, the predicted density
profile was generally in good agreement with the experimental and DSMC results with respect to both the thickness and
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Figure 9: Inverse thickness ratio with respect to inflow Mach number for a stationary normal shock in argon (𝛿 = 2,
𝛾 = 5∕3) computed using a ℙ3 scheme with 100 elements and 𝑁𝑣 = 𝑁𝜁 = 32. Navier–Stokes results of Mieussens [7] and
experimental results of Alsmeyer [21] (squares), Linzer and Hornig [29] (triangles), and Camac [30] (diamonds) shown for
reference.

the structure, although some minor undershoot in the upstream section of the shock was observed. At 𝑀 = 9.0, even
better agreement with the experiment was observed, with the predicted density profiles matching up almost exactly
and with notably better predictions than the DSMC results. The benefits of the kinetic approach to predicting shock
structures are clearly evident in these results.
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Figure 10: Normalized density, velocity, and pressure profiles for a stationary normal shock in argon (𝛿 = 2, 𝛾 = 5∕3) at
𝑀 = 3.8 (left) and 𝑀 = 9.0 (right) computed using a ℙ3 scheme with 100 elements and 𝑁𝑣 = 𝑁𝜁 = 32. Experimental
density profiles of Alsmeyer [21] (square markers) and DSMC density profiles of Bentley and Greendyke [31] (triangle
markers) shown for reference.

To observe the effects of the various flow conditions on the distribution function, the profiles of the distribution
function at various locations in the flow were visualized for 𝑀 = 3.8 and 𝑀 = 9.0. Since the velocity/internal energy
domain is two-dimensional in this case, the velocity component 𝑓𝑢(𝑢) was extracted by taking the discrete maxima
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over the internal energy domain, i.e.,
𝑓𝑢(𝑢) = max

𝜁
𝑓 (𝑢, 𝜁). (72)

The predicted distribution function profiles for 𝑀 = 3.8 and 𝑀 = 9.0 are shown in Fig. 11 at the upstream
(𝑥 = −25), shock (𝑥 = 0), and downstream (𝑥 = 25) locations. The discrete values of the distribution function are
shown as markers, but for presentation purposes, a spline interpolation of these values is also shown. The profiles
indicate that the a priori approach for choosing the extent of the velocity domain is sufficient as all of the statistically
significant variation in the profiles was completely captured within the domain. For both Mach numbers, the upstream
and downstream distribution functions appeared Maxwellian, indicating the flow is in thermodynamic equilibrium,
whereas at the shock showed clear non-equilibrium behavior. The distribution functions both also showed the increase
of the thermal velocity across the shock. These results appear to agree qualitatively with the results of Mieussens [7]
obtained with a three-dimensional velocity space at a slightly different Mach number.
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Figure 11: Velocity component of the distribution function at various spatial locations for a stationary normal shock
in argon (𝛿 = 2, 𝛾 = 5∕3) at 𝑀 = 3.8 (left) and 𝑀 = 9.0 (right) computed using a ℙ3 scheme with 100 elements and
𝑁𝑣 = 𝑁𝜁 = 32. Nodal values shown as markers, spline interpolation shown as lines.

5.4. Sod Shock Tube
Extensions to unsteady gas dynamics with discontinuities was performed through the Sod shock tube [33]. This

one-dimensional test case exhibits the three main features of the Riemann problem, namely a shock wave, a contact
discontinuity, and a rarefaction wave, which makes it a suitable test for the discontinuity-resolving properties of the
proposed scheme. The problem is computed on the domain Ω𝑥 = [0, 1] and the initial conditions are given as

𝐪(𝑥, 0) =
{

𝐪𝐿, if𝑥 ≤ 0.5,
𝐪𝑅, else,

where 𝐪𝐿 =
⎡

⎢

⎢

⎣

1
0
1

⎤

⎥

⎥

⎦

, 𝐪𝑅 =
⎡

⎢

⎢

⎣

0.125
0
0.1

⎤

⎥

⎥

⎦

, (73)

with Dirichlet boundary conditions on both ends. The specific heat ratio 𝛾 was set to 1.4 (𝛿 = 4) for consistency with
the original problem setup.

To evaluate the validity of the resolution requirements posed in Section 3.6, the parameters of the scheme were fixed
while modulating the mesh Knudsen number. A ℙ3 scheme with 50 elements was used with 𝑁𝑣 = 𝑁𝜁 = 16 and mesh
Knudsen numbers of 𝐾𝑛ℎ = 1, 1∕10, and 1∕100 based on the initial macroscopic state. The predicted macroscopic
solution profiles are shown in Fig. 12 at 𝑡 = 0.2 for these respective mesh Knudsen numbers. For 𝐾𝑛ℎ = 1, the
solution was excessively diffused, although the locations and magnitudes of most discontinuities were reasonably
predicted. With 𝐾𝑛ℎ = 1∕10 (the proposed resolution limit), the solution was in good agreement with the exact Euler
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results, with excellent resolution of the location and magnitude of the discontinuities and minimal observable spurious
oscillations. The contact discontinuity was more diffused compared to the shock, but this behavior is expected due
to the compressive nature of shock waves. When the mesh Knudsen number was lowered past the proposed limit to
𝐾𝑛ℎ = 1∕100, spurious oscillations began to appear in the predicted profiles, severely degrading the accuracy of the
solution. However, the location and magnitude of the discontinuities were still reasonably well predicted, indicating
that the prediction of the governing physics is not severely degraded even with a numerically ill-behaved solution.
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Figure 12: Density, velocity, and pressure profiles for the Sod shock tube problem at 𝑡 = 0.2 with varying mesh Knudsen
number 𝐾𝑛ℎ computed using a ℙ3 scheme with 50 elements, 𝑁𝑣 = 𝑁𝜁 = 16, and 𝛿 = 4 (𝛾 = 1.4). Results shown in
comparison to the exact Euler profiles.

The proposed resolution limit was further explored with a mesh convergence study. The mesh Knudsen number
was fixed at 𝐾𝑛ℎ = 1∕10 while the mesh resolution was varied with 𝑁𝑒 = 50, 100, and 200. The predicted solution
profiles showed excellent convergence to the exact Euler results with increasing resolution (i.e., decreasing Knudsen
number). Sub-element resolution of the shock was generally observed, whereas the contact was generally resolved
over 1-2 elements. As mentioned in Section 3.6, the resolution limit does not guarantee monotonicity of the solution
in the vicinity of a discontinuity. This was observed in the predicted velocity profiles with very minor overshoots in the
vicinity of the shock. However, the predicted density and pressure profiles were (visually) monotonic in the vicinity
of the discontinuities. These results indicate that the mesh Knudsen number offers a suitable indicator metric for the
resolution of discontinuous structures.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝑥

𝜌,
𝑈

,𝑝 Euler
Density
Velocity
Pressure

(a) 𝑁𝑒 = 50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝑥

𝜌,
𝑈

,𝑝

(b) 𝑁𝑒 = 100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝑥

𝜌,
𝑈

,𝑝

(c) 𝑁𝑒 = 200

Figure 13: Density, velocity, and pressure profiles for the Sod shock tube problem at 𝑡 = 0.2 with a fixed mesh Knudsen
number 𝐾𝑛ℎ = 1∕10 computed using a ℙ3 scheme with varying mesh resolution, 𝑁𝑣 = 𝑁𝜁 = 16, and 𝛿 = 4 (𝛾 = 1.4).
Results shown in comparison to the exact Euler profiles.
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5.5. Mach 3 Forward Facing Step
The proposed approach was then extended to large-scale problems on two-dimensional unstructured grids with

complex flow physics including strong shocks and boundary interactions through the forward facing step problem of
Woodward and Colella [34]. This problem originally consists of an inviscid Mach 3 flow in a wind tunnel with a
step perturbation that forms strong shocks, rarefaction fans, and contact discontinuities. The domain is set as Ω𝐱 =
[0, 3] × [0, 1] ⧵ [0.6, 3] × [0, 0.2] with the initial conditions set as 𝐪(𝐱, 0) = [1, 1, 0, 1∕(𝛾𝑀2)]𝑇 for a specific heat ratio
𝛾 = 1.4 (𝛿 = 3) and Mach number 𝑀 = 3. Dirichlet boundary conditions were applied on the inlet (𝑥 = 0) and
Neumann boundary conditions were applied on the outlet (𝑥 = 3). The remaining boundaries were set to specular wall
boundary conditions. To vastly simplify the implementation of the specular wall boundary conditions, the velocity
offsets were set as 𝐔0 = 𝟎 and the polar resolution 𝑁𝜙 was set as a multiple of 4, such that the velocity space was
symmetric about the wall normal directions and the reflection operator in Eq. (60) could be easily and efficiently
implemented without requiring interpolation in velocity space.

The problem was solved using a ℙ4 scheme on a series of meshes of increasing resolution with 𝑁𝑟 = 𝑁𝜙 = 16
and 𝑁𝜁 = 8. The coarse, medium, and fine meshes were generated using approximately homogeneous unstructured
triangles with characteristic mesh lengths of ℎ = 1∕50, 1∕100, and 1∕200, respectively, resulting in 2.3⋅104, 7.6⋅104,
and 3.1⋅105 elements. For the given resolution in the spatial, velocity, and internal energy domains, this resulted in
approximately 703 million total degrees of freedom for the coarse mesh, 2.38 billion total degrees of freedom for the
medium mesh, and 9.65 billion total degrees of freedom for the fine mesh. The Knudsen number was set based on
the initial conditions as 𝐾𝑛 = 1⋅10−2, 5⋅10−3, and 2⋅10−3 for the coarse, medium, and fine meshes, respectively,
such that the mesh Knudsen number was approximately constant and the flow structures could be fully resolved. The
approximate computational cost of the finest case was 480 GPU-hours (15 hours on 32 GPUs), which, given such a
large number of degrees of freedom, shows the efficiency of the proposed approach.

The predicted density profiles at 𝑡 = 12, represented through isocontours equispaced on the range [0, 5], are shown
in Fig. 14 for the various meshes and problem setups. The results show the canonical structure of the forward-facing
step, with a strong shock reflected from the step, a rarefaction fan centered on the corner, and a Mach stem emanating
from the top wall. For each case, the discontinuities in the flow were very well resolved and showed no spurious
oscillations in the vicinity of the shocks. Furthermore, the thickness of the discontinuities decreased accordingly with
decreasing mesh size and Knudsen number. With decreasing Knudsen number, it can be seen that the results are
converging to predictions in the Euler limit (see Dumbser et al. [35], Fig. 8). These effects were most noticeable in the
“liftoff” of the Mach stem emanating from the bottom wall, which should decrease to zero in the absence of physical
and numerical viscosity, and the behavior of the contact line emerging from the triple point. In the Euler limit, the onset
of Kelvin–Helmholtz instabilities should become evident along this contact line, but with a finite Knudsen number,
these instabilities can be stabilized due to viscous effects.

To evaluate the ability of the proposed approach to resolve shock structures, the contours of density in the region
of the leading shock are shown in Fig. 15 in comparison to the computational mesh. It can be seen that the flow fields
show quite impressive sub-element resolution of the shock, effectively predicting a monotonic shock structure over a
length of only 1-2 spatial solution points. Furthermore, this behavior was maintained with decreasing mesh scale by
fixing the mesh Knudsen number. The level of resolution of shocks relative to the mesh scale afforded by the present
Boltzmann–BGK approach without any numerical shock capturing scheme rival that of a high-order discontinuous
spectral element method augmented with highly-resolved a posteriori WENO-type reconstruction [35]. These results
indicate that the proposed approach can be a very effective tool for directly resolving shock structures in more complex
fluid flows.

5.6. Kelvin–Helmholtz Instability
As an initial evaluation of the Boltzmann–BGK approach in predicting turbulent flow phenomena, the onset and

development of a two-dimensional Kelvin–Helmholtz instability was computed, where two counter-flowing fluids of
varying density exhibit a fluid instability which transitions into complex vortical flow. The domain is set as periodic
on Ω𝐱 = [−0.5, 0.5]2 and the initial conditions are given as

𝐪(𝑥, 𝑦, 0) =
{

𝐪𝐿, if |𝑦| ≤ 0.25,
𝐪𝑅, else,

where 𝐪𝐿 =
⎡

⎢

⎢

⎢

⎣

2
0.5

𝑉 (𝑥, 𝑦)
6.25

⎤

⎥

⎥

⎥

⎦

, 𝐪𝑅 =
⎡

⎢

⎢

⎢

⎣

1
−0.5
𝑉 (𝑥, 𝑦)
6.25

⎤

⎥

⎥

⎥

⎦

, (74)
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(a) Coarse mesh, 𝐾𝑛 = 1⋅10−2

(b) Medium mesh, 𝐾𝑛 = 5⋅10−3

(c) Fine mesh, 𝐾𝑛 = 2⋅10−3

Figure 14: Isocontours of density (equispaced on the range [0, 5]) for the Mach 3 forward facing step problem at 𝑡 = 12
computed using a ℙ4 scheme with 𝑁𝑟 = 𝑁𝜙 = 16, 𝑁𝜁 = 8, and 𝛿 = 3 (𝛾 = 1.4). Top row: Coarse mesh (2.3⋅104 elements)
with 𝐾𝑛 = 1⋅10−2. Middle row: Medium mesh (7.6⋅104 elements) with 𝐾𝑛 = 5⋅10−3. Bottom row: Fine mesh (3.1⋅105
elements) with 𝐾𝑛 = 2⋅10−3.

which yields an Atwood number of 1∕3 and a maximum Mach number of 0.2. To seed instabilities in the flow, a single
mode is excited similarly to Springel [36] by setting the initial vertical velocity component as

𝑉 (𝑥, 𝑦) = 𝜅 sin(𝜔𝜋𝑥)
[

exp
(

−(𝑦 − 0.25)2

2𝜎2

)

+ exp
(

−(𝑦 + 0.25)2

2𝜎2

)]

, (75)

where the parameters 𝜅 = 0.02, 𝜔 = 128, and 𝜎 = 0.0035 dictate the perturbation strength, frequency, and vertical
decay, respectively. The collision time 𝜏 was set constant according to a reference dynamic viscosity 𝜇 = 𝜏𝑃 = 10−5
based on the initial static pressure. Due to the low Mach number, the variations in pressure, and therefore viscosity,
were relatively low.

To verify the ability of the proposed scheme to predict the onset of flow instabilities consistent with the hydrody-
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(a) Coarse mesh, 𝐾𝑛 = 1⋅10−2 (b) Medium mesh, 𝐾𝑛 = 5⋅10−3 (c) Fine mesh, 𝐾𝑛 = 2⋅10−3

Figure 15: Enlarged view of the contours of density with mesh overlay near the leading shock for the Mach 3 forward
facing step problem at 𝑡 = 12 computed using a ℙ4 scheme on a coarse (left), medium (middle), and fine (right) mesh.

namic equations, a comparison between the solution computed with the Boltzmann–BGK equation and the solution
computed with the Navier–Stokes equations was performed. For both cases, the solution was computed on a uniform
4002 quadrilateral mesh with a ℙ3 scheme, and to reduce the overall computational cost, the monatomic case was
chosen (𝛿 = 0, 𝛾 = 2). For the velocity space discretization of the Boltzmann–BGK approach, the resolution was set
as 𝑁𝑟 = 𝑁𝜙 = 32, yielding approximately 2.62 billion degrees of freedom. To maintain consistency between the two
methods, the Navier–Stokes approach was computed with 𝑃𝑟 = 1, 𝛾 = 2, and 𝜇 = 10−5, and the entropy filtering
method of Dzanic and Witherden [37] was used to stabilize the high-order scheme in the vicinity of discontinuities.

The predicted density profiles, represented as equispaced isocontours on the range [1, 2], at unit time intervals are
shown in Fig. 16 for both the Boltzmann–BGK and Navier–Stokes approaches. It can be seen that even though transport
in the Boltzmann–BGK equation is linear, the predicted results evidently show the development of the instability into
complex vortical flow. In fact, in the earlier time intervals, the large-scale coherent structures of the flow were almost
identically computed by the Navier–Stokes and the Boltzmann–BGK approaches. The two flow fields did start to
diverge at later times, but this is expected due to the chaotic nature of the Kelvin–Helmholtz instability. Furthermore,
the range of scales of the flow features were generally similar between the two approaches, indicating that the turbulent
length scales are properly resolved by the Boltzmann–BGK approach. Some discrepancies in the smallest scales did
exist between the two approaches, with the Boltzmann–BGK approach showing marginally smaller flow features. This
may be attributed to the numerical dissipation introduced by the discontinuity capturing approach for the Navier–Stokes
method which artificially inflates the physical viscosity and the minor fluctuations in viscosity of the Boltzmann–
BGK approach related to low pressure regions in the vortex cores. However, the marked similarities between the
predicted flow fields still indicate that the Boltzmann–BGK approach can accurately resolve multi-scale nonlinear
flow phenomena in a manner that is consistent with predictions in the continuum limit.

For a more quantitative comparison, the evolution of the volume-integrated enstrophy, defined as

𝜀𝐸 = 1
𝑉 ∫Ω𝐱

1
2
𝜌𝝎⋅𝝎 d𝐱, (76)

where 𝝎 is the vorticity and 𝑉 = 1 is the domain volume, was calculated for both approaches. The predicted enstrophy
profiles are shown in Fig. 17 over the range 0 ≤ 𝑡 ≤ 5. Very good agreement between the Navier–Stokes results and the
Boltzmann–BGK results was observed, both with the early rapid decay of enstrophy associated with the initial velocity
perturbations as well as with the long-term evolution of the enstrophy profile driven by turbulent mixing and viscous
dissipation. These results give an initial quantitative verification of the ability of the Boltzmann–BGK approach to
resolve complex fluid flows.

5.7. Compressible Taylor–Green Vortex
As the final and most rigorous test case, the transition to turbulence of a three-dimensional compressible Taylor–

Green vortex was studied. To the authors’ knowledge, this is the first direct numerical simulation of three-dimensional
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(a) Boltzmann–BGK

(b) Navier–Stokes

Figure 16: Isocontours of density (equispaced on the range [1, 2]) for the Kelvin–Helmholtz instability problem at 𝑡 = 1
(left), 𝑡 = 2 (middle-left), 𝑡 = 3 (middle-right), and 𝑡 = 4 (right) computed using a ℙ3 scheme with 4002 elements and
𝜇 = 10−5. Top row: Boltzmann–BGK with 𝑁𝑟 = 𝑁𝜙 = 32 and 𝛿 = 0 (𝛾 = 2). Bottom row: Navier–Stokes with 𝑃𝑟 = 1 and
𝛾 = 2.
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Figure 17: Temporal evolution of the volume-integrated enstrophy for the Kelvin–Helmholtz instability problem computed
using a ℙ3 scheme with 4002 elements and 𝜇 = 10−5. Boltzmann–BGK results computed with 𝑁𝑟 = 𝑁𝜙 = 32 and 𝛿 = 0
(𝛾 = 2). Navier–Stokes results computed with 𝑃𝑟 = 1 and 𝛾 = 2.

turbulent flows performed by directly solving the Boltzmann equation, made possible by the efficiency of the proposed
approach. This canonical test case consists of an initially laminar flow that transitions as time evolves, forming large
coherent vortical structures that eventually break down to small-scale isotropic turbulence. The problem is solved the
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periodic domain Ω𝐱 = [−𝜋, 𝜋]3, and the initial conditions are given as

𝐪(𝑥, 𝑦, 𝑧, 0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
sin(𝑥) cos(𝑦) cos(𝑧)

− cos(𝑥) sin(𝑦) cos(𝑧)
0

𝑃0 +
1
16 (cos(2𝑥) + cos(2𝑦)) (cos(2𝑧 + 2))

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (77)

The reference pressure was set as 𝑃0 = 1∕(𝛾𝑀2), where 𝛾 = 5∕3 and 𝑀 = 0.2. The monatomic case (𝛿 = 0) was
chosen to make the computational cost tractable and the Mach number was slightly increased over its typical value
of 𝑀 = 0.08 to decrease the stiffness of the source term. The collision time was set constant as 𝜏 = 𝜇∕𝑃0, where
the reference dynamic viscosity was set as 𝜇𝑟𝑒𝑓 = 1∕1600 corresponding to a Reynolds number of 1600. Through a
posteriori analysis, the variation in the viscosity due to the fixed collision time was deemed to be negligible due to the
low Mach number.

The problem was solved on a series of increasingly-resolved meshes and compared to a standard Navier–Stokes
approach. As a point of reference, direct numerical simulation was performed by solving the flow field with the same
Navier–Stokes approach (𝛾 = 5∕3, 𝑃𝑟 = 1) on a 𝑁𝑒 = 643 mesh with a ℙ3 scheme, a suitable level of resolution
for capturing all statistically significant physical scales [38]. Comparison was then performed on a series of meshes
with 𝑁𝑒 = 163, 323, and 483, also discretized with a ℙ3 scheme. For the Boltzmann–BGK approach, the velocity
domain was discretized with 𝑁𝑟 = 16, 𝑁𝜙 = 16, and 𝑁𝜓 = 8, which will later be shown to be sufficiently resolved.
For the finest case, where the resolution level corresponded to approximately 14.5 billion degrees of freedom, the
computational cost was on the order of 3000 GPU-hours (72 hours on 40 GPUs). In comparison, the cost of the
Navier–Stokes approach for the same mesh was approximately 16 GPU hours.
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Figure 18: Dissipation measured by enstrophy for the compressible Taylor-Green vortex at 𝑅𝑒 = 1600 computed using
a ℙ3 scheme with 163 (left), 323 (middle), and 483 (right) elements. Boltzmann–BGK results computed with 𝑁𝑟 = 16,
𝑁𝜙 = 16, 𝑁𝜓 = 8, and 𝛿 = 0 (𝛾 = 5∕3). Navier–Stokes results computed with 𝑃𝑟 = 1 and 𝛾 = 5∕3.

The standard metric of comparison for the Taylor–Green vortex is the dissipation 𝜀𝐷 measured by a scaled form
of the non-dimensional volume-integrated enstrophy, given as

𝜀𝐷 = 𝛽
𝑉 ∫Ω𝐱

1
2
𝜌𝝎⋅𝝎 d𝐱 = 𝛽𝜀𝐸 , (78)

where 𝛽 = 2𝜇 is the scaling factor and 𝑉 = 8𝜋3 is the domain volume. The viscosity was taken as a constant
corresponding to the reference value 𝜇𝑟𝑒𝑓 , but the differences to the enstrophy values computed using the pressure-
dependent viscosity 𝜇 = 𝜏𝑃 were confirmed to be negligible. The profiles of the enstrophy-based dissipation rate
are shown in Fig. 18 for the various meshes. For the coarsest mesh, the enstrophy was underpredicted for both the
Boltzmann–BGK and the Navier–Stokes approaches in comparison to the reference results due to the low levels of
resolution, However, the profiles showed relatively good agreement between the two approaches, with the Boltzmann–
BGK results showing some more oscillations in the profile and an overprediction of the enstrophy at later times. When
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the resolution was increased to the medium mesh, the enstrophy profile of the Boltzmann–BGK approach showed
much better agreement with the reference results, with better agreement at the enstrophy peak than the Navier–Stokes
results at the same resolution but with a spurious secondary peak at a later time. For the finest mesh, the results of the
Boltzmann–BGK approach converged excellently to the reference results with nearly an identical enstrophy profile.
Furthermore, these results were consistent with the work of Cao et al. [39] which utilized a gas kinetic scheme derived
from the Chapman—Enskog expansion of the Boltzmann–BGK equation that directly solves for the conserved flow
variables.
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Figure 19: Convergence of dissipation measured by enstrophy (left) and mass conservation error (right) with respect to
velocity space resolution 𝑁𝑣 = 𝑁𝑟 × 𝑁𝜙 × 𝑁𝜓 for the Boltzmann-BGK approximation of the compressible Taylor–Green
vortex at 𝑅𝑒 = 1600 computed using a ℙ3 scheme with the DVM and 𝑁𝑒 = 323. Default velocity space resolution shown
in red.

To verify that the results were converged in the velocity domain and the scheme remained conservative, the spatial
resolution was fixed at 𝑁𝑒 = 323 and the velocity resolution was modulated. The predicted enstrophy profiles and the
mass conservation error for the various velocity resolution levels are shown in Fig. 19. In comparison to the standard
resolution used in this study (𝑁𝑣 = 16 × 16 × 8), lowering the resolution to 𝑁𝑣 = 12 × 12 × 6 resulted in a very
similar enstrophy profiles, with just a slightly deviation in the second spurious enstrophy peak. When the resolution
was increased to 𝑁𝑣 = 20 × 20 × 10, the results were essentially indistinguishable from the standard resolution,
indicating that the results were well-converged in the velocity domain for the choice of velocity resolution used for the
experiments. Furthermore, regardless of the choice of the resolution, the scheme remained conservative, with a mass
conservation error of less than 10−10 purely as a result of the linear accumulation of mass conservation error roughly
on the order of machine precision per time step.

A comparison between the flow fields was then performed to confirm that the turbulent structures in the flow were
accurately predicted. The isosurfaces of Q-criterion (with 𝑄 = 0.2) colored by density are shown for the various
meshes in Fig. 20 at 𝑡 = 10 where the enstrophy is near its peak. It can be seen that the dominant flow structures
were accurately predicted by the Boltzmann–BGK approach in comparison to the reference results, even at the lowest
mesh resolution, and these results were very similar to the Navier–Stokes predictions at the same resolution. When the
resolution was increased, the predicted results converged excellently to the reference results, with effectively identical
prediction of the flow structures and the density distribution within the domain.

As a final verification of the ability of the Boltzmann–BGK approach in predicting turbulent flow phenomena, the
behavior of the turbulent kinetic energy spectra was examined. Similarly to the Q-criterion isosurfaces, this analysis
was performed near the enstrophy peak at 𝑡 = 10. The spectra𝐸(𝑘) was computed by taking the three-dimensional fast
Fourier transform of the square of the velocity magnitude (𝐔 ⋅𝐔) interpolated onto a uniform grid of the same number
of degrees of freedom and then performing a spherical averaging operation with the number of bins set identical to the
maximum resolvable wavenumber in one-dimension (𝑁𝑒(𝑝+1)∕2). The predicted energy spectra are shown in Fig. 21
for the various meshes. It can be seen that the predicted spectra converged to the reference results with increasing
resolution. Furthermore, for a given resolution, the Boltzmann–BGK approach remarkably predicts the energy spectra
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(a) Boltzmann-BGK, 𝑁𝑒 = 163 (b) Navier–Stokes, 𝑁𝑒 = 163

(c) Boltzmann-BGK, 𝑁𝑒 = 323 (d) Navier–Stokes, 𝑁𝑒 = 323

(e) Boltzmann-BGK, 𝑁𝑒 = 483 (f) Navier–Stokes, 𝑁𝑒 = 483

(g) Reference

Figure 20: Isosurfaces of 𝑄-criterion = 0.2 colored by density at 𝑡 = 10 for the compressible Taylor–Green vortex
at 𝑅𝑒 = 1600 computed using a ℙ3 scheme with varying mesh resolution. Left column: Boltzmann–BGK results with
𝑁𝑟 = 16, 𝑁𝜙 = 16, 𝑁𝜓 = 8, and 𝛿 = 0 (𝛾 = 5∕3). Right column: Navier–Stokes results with 𝑃𝑟 = 1 and 𝛾 = 5∕3.
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Figure 21: Turbulent kinetic energy spectra at 𝑡 = 10 for the compressible Taylor-Green vortex computed using a ℙ3
scheme with 163 (left), 323 (middle), and 483 (right) elements. Boltzmann–BGK results computed with 𝑁𝑟 = 16, 𝑁𝜙 = 16,
𝑁𝜓 = 8, and 𝛿 = 0 (𝛾 = 5∕3). Navier–Stokes results computed with 𝑃𝑟 = 1 and 𝛾 = 5∕3.

almost identically to the Navier–Stokes approach. These results present a validation of the Boltzmann–BGK approach
for three-dimensional turbulent flows and indicate that the approach can accurately resolve turbulent flow phenomena
in a consistent manner with respect to the hydrodynamic equations.

6. Conclusions
In this work, we have presented a novel numerical approach for the solving the polyatomic Boltzmann equation

with a BGK collision model. The proposed approach utilizes a combination of an efficient implementation of a high-
order flux reconstruction spatial discretization augmented with a positivity-preserving limiter and a discrete velocity
model ensuring the conservation and well-balancing properties of the scheme. As a result, the computation of three-
dimensional problems on arbitrary domains becomes entirely feasible on the current generation of high-performance
computing architectures. The method was validated on a series of canonical flow problems in both the continuum and
rarefied regime, showing high-order spatial accuracy and discrete conservation as well as sub-element resolution of
shock waves without the need of any ad hoc numerical shock capturing techniques. Furthermore, the results of the
simulation of a three-dimensional compressible Taylor–Green vortex, which is, to the authors’ knowledge, the first
such case of a three-dimensional turbulent flow simulated via directly solving the Boltzmann equation, demonstrate
the ability of the proposed approach as a method for direct numerical simulation of compressible turbulence.

Extensions of this method will be performed on the analysis and validation of wall boundary conditions, the use of
moment-based velocity discretizations, implementation of implicit time integration to address stiffness in the collision
term, and applications to high-temperature and rarefied flows. We believe that the demonstrated ability of directly
solving the Boltzmann equation opens a new path for the study of transition to turbulent and shock boundary layer
interactions in high speed flow since the evolution of the probability density function encodes the dynamics of the
flow in a form that is not accessible from the solution of the compressible Navier–Stokes equations. Furthermore, this
approach allows for a unified framework for simulating flows in both the continuum and rarefied regime.
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