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ABSTRACT
For large Reynolds number flows, it is typically necessary to perform simulations that are under-
resolved with respect to the underlying flow physics. For nodal discontinuous spectral element
approximations of these under-resolved flows, the collocation projection of the nonlinear flux can
introduce aliasing errors which can result in numerical instabilities. In Dzanic andWitherden (J. Com-
put. Phys., 468, 2022), an entropy-based adaptive filtering approach was introduced as a robust,
parameter-free shock-capturing method for discontinuous spectral element methods. This work
explores the ability of entropy filtering for mitigating aliasing-driven instabilities in the simulation of
under-resolved turbulent flows through high-order implicit large eddy simulations of a NACA0021
airfoil in deep stall at a Reynolds number of 270,000. It was observed that entropy filtering can
adequately mitigate aliasing-driven instabilities without degrading the accuracy of the underlying
high-order scheme on par with standard anti-aliasing methods such as over-integration, albeit with
marginally worse performance at higher approximation orders.
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1. Introduction

The accurate and efficient prediction of complex tur-
bulent flows has been a significant driving force in the
development of computational fluid dynamics meth-
ods over the decades. The primary difficulty in the
simulation of these flows is the large variation of
scales encountered in high Reynolds number regimes,
such that the numerical resolution requirements of the
underlying physical phenomena make direct simula-
tion computationally intractable for practical applica-
tions. In many cases, it is necessary to perform sim-
ulations that are under-resolved with respect to the
physical scales of the flow field in question. While
this lack of resolution introduces error in the approx-
imation of the flow, the goal of these under-resolved
simulations is to still accurately predict the predomi-
nant large-scale flow physics at a lower computational
cost.

For these scale-resolving simulations of turbu-
lent flows, discontinuous spectral element methods
(DSEM) have shown promise as an efficient and
accurate numerical approach (Hesthaven and War-
burton 2008; Huynh 2007; Kopriva and Kolias 1996;
Liu, Vinokur, and Wang 2004). By approximating the
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solution by a set of piecewise-continuous high-order
polynomials within each element, these schemes com-
bine the geometric flexibility of finite volume meth-
ods with the arbitrarily high-order accuracy and effi-
ciency of finite difference methods. As such, they have
allowed for the computation of complex fluid flows
that would otherwise be intractable with standard
low-order numerical methods. However, for nonlinear
equations such as the ones governing fluid flow, the
projection of the nonlinear flux onto the polynomial
space spanned by the solution can introduce numerical
instabilities (Karniadakis and Sherwin 2005). These
instabilities, so-called aliasing errors, stem from the
energy of high-frequency under-resolved modes alias-
ing to lower frequency modes (Spiegel, Huynh, and
DeBonis 2015). This effect becomes particularly prob-
lematic for simulations that are significantly under-
resolved, where aliasing errors can result in unpre-
dictable behaviour or the failure of the numerical
approach altogether (Gassner and Beck 2012).

Various approaches have been proposed as numer-
ical stabilisation and anti-aliasing methods for under-
resolved flows, including modal filtering (Gassner and
Beck 2012; Gottlieb and Shu 1997; Hesthaven and
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Kirby 2008), over-integration (Gassner and Beck 2012;
Spiegel, Huynh, and DeBonis 2015), and spectral van-
ishing viscosity (Karamanos and Karniadakis 2000;
Tadmor 1990). Of these methods, the modal filtering
approach is typically the simplest and most common
technique, where the high-frequency content in the
solution is explicitly dissipated to attempt to mitigate
aliasing-driven instabilities. However, this simplicity
comes with a lack of robustness, requiring problem-
specific parameters that can require extensive tuning
and may drastically affect the stability and accuracy
of the simulation. On the other end of the spectrum,
over-integration, sometimes referred to as polyno-
mial de-aliasing or Galerkin projection, is a robust
and accurate technique for mitigating aliasing errors.
In this approach, the nonlinear flux is approximated
using a more optimal projection onto the polynomial
space spanned by the solution, typically performed by
utilising a sufficiently strong quadrature rule. While
thismethod can offer superior accuracy in comparison
to other approaches, it comes with an increase in com-
putational cost which may be significant for severely
under-resolved flows. As such, there is potential to
expand the ability to robustly and efficiently simulate
turbulent flows using DSEM if alternate approaches
can be used to mitigate aliasing errors.

In Dzanic andWitherden (2022), an entropy-based
adaptive filtering approachwas introduced for the pur-
pose of mitigating numerical instabilities stemming
from high-order DSEM approximations of discontin-
uous flow features (i.e. shocks). It was observed by the
authors that this shock-capturing approach, referred
to as entropy filtering, also allowed for the simula-
tion of high Reynolds number flows on under-resolved
meshes that would typically be unstable due to aliasing
errors. We posit that this is a result of aliasing errors
manifesting as violations of a local minimum entropy
principle, which is supported by the observations of
Honein and Moin (2004), such that entropy filter-
ing may adequately perform as an anti-aliasing tech-
nique separately from its purpose as a shock-capturing
approach. In this work, we explore the capability and
accuracy of entropy filtering for anti-aliasing in DSEM
approximations of under-resolved turbulent flows. In
particular, we consider implicit large eddy simulations
of a NACA0021 in deep stall from the DESider project
(Haase, Braza, and Revell 2009) as presented by Park,
Witherden, and Vincent (2017), a case notorious for
aliasing driven instabilities in high-ordermethods that

requires a substantial amount of numerical stabilisa-
tion for the given setup, and present a comparison to
standard anti-aliasing approaches.

The remainder of this paper is organised as follows.
We present the methodology in Section 2, includ-
ing an overview of the numerical approach, various
anti-aliasing techniques, and the problem setup. The
results of the numerical experiments are then shown in
Section 3. Conclusions are finally drawn in Section 4.

2. Methodology

2.1. Governing Equations

We consider the three-dimensional compressible
Navier–Stokes equations, given as

∂ρ

∂t
+ ∂

∂xi
(ρvi) = 0, (1)

∂

∂t
ρvi + ∂

∂xj
(ρvivj) = − ∂P

∂xi
+ ∂

∂xj
τij, (2)

∂

∂t
E + ∂

∂xj
(Evj) = ∂

∂xj

[
viτij − qj − Pvj

]
, (3)

where ρ is the density, ρvi are the momentum compo-
nents, andE is the total energy. Furthermore, we define
the stress tensor, strain tensor, and heat flux as

τij = 2μ
[
Sij − 1

3
∂vk
∂xk

]
, (4)

Sij = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
, (5)

and

qj = μ

Pr
∂h
∂xj

, (6)

respectively, where μ is the dynamic viscosity and
Pr = 0.71 is the molecular Prandtl number, and h is
the specific enthalpy. Using the ideal gas equation of
state, the pressure is then defined as

P = (γ − 1)
(
E − 1

2
ρvivi

)
, (7)

where γ = 1.4 is the specific heat ratio.
The Navier–Stokes equations can also be conve-

niently represented in the form of a system of conser-
vation laws as

∂tu + ∇· (FI(u)+ FV(u)) = 0, (8)
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where u = [ρ, ρv,E]T = [ρ, ρu, ρv, ρw,E]T is the
solution and

FI =
⎡
⎣ ρv

ρv ⊗ v + PI
(E + P)v

⎤
⎦ and

FV =
⎡
⎣ 0

−μ (∇v + ∇vT
) + 2

3μ∇ · v
−μ (∇v + ∇vT

)
v − μ

Pr∇h

⎤
⎦ (9)

are the inviscid and viscous fluxes, respectively.

2.2. Numerical Discretization

The governing equations were discretised using the
flux reconstruction scheme of Huynh (2007), a gener-
alisation of the nodal discontinuous Galerkin method
(Hesthaven and Warburton 2008). In this approach,
the mesh T is a discretization of the domain� with N
disjoint elements, such that T = ⋃

N Tk and Ti ∩ Tj =
∅ for i �= j. Within each element Tk, a discrete solu-
tion uh(x) is obtained through a nodal interpolating
approximation as

uh(x) =
Ns∑
i=1

u(xsi)φi(x), (10)

where xsi ∈ Tk ∀ i ∈ {1, . . . ,Ns} is a set of Ns solution
nodes and φi(x) is a set of polynomial basis functions
with the property φi(xsj) = δij. We use the notation Pp
to represent the order of the approximation for some
order p, defined as the maximal order of uh(x).

A discontinuous approximation of the inviscid flux
is first formed via a collocation projection of the invis-
cid flux onto the solution space, i.e.

fD(x) =
Ns∑
i=1

FI
(
u(xsi)

)
φi(x), (11)

A corrected flux is then formed by amending the
discontinuous flux with additional correction terms
which enforce C0 continuity in the normal direction
of ∂Tk as

fC(x) = fD(x)+
Nf∑
i=1

[
Fi − fD(xfi ) · ni

]
hi(x), (12)

where xfi ∈ ∂�k ∀ i ∈ {1, . . . ,Nf } is a set of Nf inter-
face flux nodes, ni is their associated outward-facing

normal vector, Fi is the common inviscid interface flux
to be defined in Section 2.4, and hi is the correction
function associated with the given flux node. These
correction functions have the properties that

Nf∑
i=1

hi(x) ∈ RTp and ni · hj(xfi ) = δij, (13)

where RTp is the Raviart–Thomas space of order p
(Raviart and Thomas 1977). The correction func-
tions are chosen to recover the nodal discontinu-
ous Galerkin approach (Hesthaven and Kirby 2008;
Huynh 2007; Trojak andWitherden 2021) in this work.

For the viscous component, it is necessary first to
form an appropriate approximation of the gradient of
the solution, represented as

w ≈ ∇u. (14)

Similarly to the calculation of the inviscid flux, a C0

continuous approximation of the solution gradient is
formed by amending the discontinuous approxima-
tion of the solution gradient as

wC(x) = wD(x)+
Nf∑
i=1

[
ui − u(xfi )

]
∇hi(x), (15)

where ui is the common interface solution and

wD(x) =
Ns∑
i=1

u(xsi)∇φi(x). (16)

The discontinuous approximation of the viscous flux
can then be computed as

gD(x) =
Ns∑
i=1

FV
(
u(xsi),w

C(xsi)
)
φi(x), (17)

after which adding the correction terms yields

gC(x) = gD(x)+
Nf∑
i=1

[
Gi − gD(xfi ) · ni

]
hi(x). (18)

Similarly to the common interface solution, a com-
mon viscous interface flux Gi, which will be defined
in Section 2.4, is used at the interfaces. With this dis-
cretization, the temporal derivative of the solution can
then be approximated as

∂tu = −∇·fC(x)− ∇·gC(x), (19)

after which the solution can be advanced using a suit-
able temporal integration scheme.
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2.3. Anti-Aliasing Techniques

To present an evaluation of the entropy filtering
approach as an anti-aliasing technique, we present a
comparison of the approach to two standard anti-
aliasing methods: over-integration and modal filter-
ing. For brevity, we occasionally use the shorthand
notation EF, OI, and MF to denote entropy filtering,
over-integration, and modal filtering, respectively.

For the over-integration approach, the goal is to find
the optimal approximation of the analytic flux within
the span of the solution space. In the L2 norm, the
best possible approximation is the L2 projection, or
Galerkin projection, of the flux onto the span of the
solution space, i.e.

fOI(x) = argmin
f

∫
Tk

‖F (uh(x))− f(x)‖2 dx. (20)

The projected flux polynomial can be represented in
modal form as

fOI(x) =
Ns∑
i=0

f̂iψi(x), (21)

where ψi(x) are a set of modal basis functions that are
orthogonal with respect to the unit measure and f̂i are
their respective coefficients computed by the integral

f̂i =
∫
Tk
F (uh(x)) ψi(x) dx. (22)

For non-polynomial flux functions, this integration
usually cannot be performed exactly, but it may be
approximated utilising a suitably-strong quadrature
rule, i.e.

∫
Tk
F (uh(x)) ψi(x) dx ≈

Nq∑
i=j

wjF
(
uh(x

q
j )

)
ψi(x

q
j ),

(23)
where xqj are a set of Nq quadrature nodes (with Nq ≥
Ns) and wj are their associated quadrature weights.
Typically, the more under-resolved the flow is, the
stronger the quadrature rule has to be tomitigate alias-
ing errors, such that for highly under-resolved flows,
the cost of computing this projection may become
substantial. In this work, we utilise Gaussian quadra-
ture rules to compute the projection with the nota-
tion OI-Qq referring to over-integration with a qth
degree quadrature rule. For a more in-depth descrip-
tion of this approach, the reader is referred to Park,
Witherden, and Vincent (2017), Section II.D.

For the modal filtering approach, the goal is to
mitigate aliasing driven instabilities by explicitly fil-
tering the high-frequency content from the solution
as these errors tend to manifest at higher frequencies
(Cox et al. 2021). In this approach, the solution is first
transformed to its modal form ũh(x), defined as

ûh(x) =
Ns∑
i=1

ûiψi(x) = uh(x), (24)

where ûi are the associated modes corresponding to
the modal basis functions ψi(x). In this modal form, a
filtered solution ũ(x) can then be obtained by applying
a filtering operation H to the individual modes as

ũh(x) =
Ns∑
i=1

Hi (̂ui) ψi(x) (25)

A standard choice of filter kernel is the exponential
filter (Hesthaven and Kirby 2008), given as

Hi(̂ui) =
⎧⎨
⎩ûi, if ηi ≤ ηc,

ûi exp
[
−κ

(
ηi−ηc
ηm−ηc

)s]
, else,

(26)
where κ ≈ log ε for some value of machine precision
ε, s is some even integer representing the filter order, ηi
is the maximal order of the ith basis function, ηc is the
cutoff order, and ηm = p + 1 is themaximal order. The
optimal parameters for the modal filtering approach
are typically not known a priori and must be tuned
on a per-case basis to yield an accurate and robust
stabilisation method.

For the entropy filtering approach, a filtering kernel
is applied similarly to a modal filter, but its parameters
are computed adaptively based on the solution’s abil-
ity to preserve certain invariants of the system such as
the positivity of density and pressure and a local dis-
crete minimum entropy principle (Dzanic and With-
erden 2022). This adaptive method is implemented in
the context of a second-order exponential filter applied
at each stage of the temporal scheme, given as

Hi(̂ui) = ûi exp
(−ζη2i ) , (27)

where ζ is the filter strength. This filter strength is
computed via an element-wise nonlinear optimisa-
tion problem that finds the minimum necessary filter
strength such that the discrete nodal solution val-
ues have positive density (ρ > 0), positive pressure
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(P>0), and an entropy greater than some minimum
threshold (σ > σmin), i.e.

ζ = arg min
ζ ≥ 0

s.t.
[
ρ̃i ≥ 0, P̃i ≥ 0, σ̃i ≥ σmin

∀ i ∈ {1, . . . ,Ns}] . (28)

The entropy functional is taken as the specific phys-
ical entropy σ = Pρ−γ , and the minimum entropy is
computed as theminimumdiscrete entropy within the
element and its Voronoi neighbours. For an in-depth
overview of this approach and description of a compu-
tationally efficient implementation thereof, the reader
is referred to Dzanic and Witherden (2022), Section 3
and Dzanic and Witherden (2023), Section 4.1.

2.4. Problem Setup and Computational Framework

The problem setup consists of a NACA0021 airfoil
operating at a Reynolds number of Re = 270, 000,
Mach number ofM = 0.1, and an angle of attack α =
60◦. At these operating conditions, the airfoil is in deep
stall, with strongly separated flowon the suction side of
the wing which yields complex unsteady flow physics.
If these physics are not very well-resolved, aliasing
errors can quickly cause the simulation to diverge. For
a suitable comparison of the anti-aliasing capabilities
of the three techniques, we utilise an identical compu-
tational setup as thework of Park,Witherden, andVin-
cent (2017), forwhich themesh resolution and approx-
imation orders were chosen such as to cause significant
numerical instabilities without sufficient anti-aliasing.

The problem was solved using both a P3 and P4
approximation, corresponding to nominally fourth-
order and fifth-order accurate spatial discretizations,
respectively. The unstructured hexahedral meshes of
Park, Witherden, and Vincent (2017) were used,
shown in Figure 1, consisting of a finer P3 mesh

(323,360 hexahedral elements) and a coarser P4 mesh
(206,528 hexahedral elements). The P4 mesh was
appropriately coarsened such that the degrees of free-
dom and the relative nodal spacing between the two
approximation orders were roughly equal, and both
meshes were generated such that the wall-normal
spacing of the first solution point was y+ ≈ 1. An
aspect ratio of 4 was chosen as this was found to be
sufficiently large enough to mitigate the sensitivity of
the flow to the spanwise extent (Park, Witherden, and
Vincent 2017).

Simulations were performed using PyFR (With-
erden, Farrington, and Vincent 2014), a high-order
flux reconstruction solver that can efficiently target
massively-parallel CPU and GPU computing architec-
tures. Computations were performed on 16 NVIDIA
V100 GPUs. Common inviscid interface fluxes were
computed using a Rusanov-type (Rusanov 1962) Rie-
mann solver with the Davis wavespeed estimate
(Davis 1988), and the common viscous interface
fluxes were computed with the BR2 approach of Bassi
et al. (2005). The solution nodes were placed at
the Gauss–Legendre quadrature nodes for the over-
integration and modal filtering approaches and the
Gauss–Lobatto quadrature nodes for the entropy filter-
ing approach, the latter of which is due to the require-
ment of collocated solution and interface flux points
for the method. Temporal integration was performed
using the classic fourth-order, four stage Runge–Kutta
scheme with a fixed time step. For consistency with
the work of Park, Witherden, and Vincent (2017), the
simulations were initialised with P1 at Re = 27, 000
and run until a characteristic time of tc = c/U∞ = 50,
where c is the chord and U∞ is the freestream veloc-
ity. The Reynolds number and approximation order
were then increased to the operating conditions and
the anti-aliasing methods of choice were applied as no

Figure 1. Cross-section of the mesh used for the P3 (left) and P4 (right) simulations. (a) P3 and (b) P4.
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continuation in approximation order was found to be
necessary to mitigate any instabilities stemming from
the initial transients in the solution. Without any anti-
aliasing approach, the simulation quickly diverged.
The flow was allowed to develop until tc = 100, and
then averaging was performed over the range tc ∈
[100, 300]. Increasing the averaging period was found
to have a minimal effect on the results.

For anti-aliasing, Q9 and Q11 over-integration was
used for the P3 and P4 approximations, respectively,
as this was deemed to be the necessary amount of
anti-aliasing to stabilize the solution over the simula-
tion time (Park, Witherden, and Vincent 2017). The
modal filter parameters were chosen as κ = 32, ηc =
0, and s = 8 (for P3) and s = 6 (for P4), with the
filter applied every N = 20 time steps. These values
were found by systematicallymodulating each compo-
nent to find a set of values that stabilised the solution
over the simulation period. We remark here that it is
unlikely that these are the optimal parameters for this
approach, and there could be values of these param-
eters that yield a stable approach with more accurate
results. However, this is the typical drawback of sta-
bilisation techniques that have free parameters – it
can be extremely costly to attempt to optimise these
parameters over many simulations, and, without a
proper point of reference, it is ambiguous as to which
parameters result in more accurate predictions. Fur-
thermore, due to the different stabilising effects of the
various anti-aliasing approaches, different maximum
time steps were permissible. For the over-integration
approach, themaximum allowable time step was�t =

2·10−5, whereas the MF approach only allowed a time
step of �t = 1·10−5. However, due to its additional
nonlinear stability properties, the EF approach allowed
a larger time step of�t = 5·10−5 (Trojak,Watson, and
Tucker 2018). These factors contribute to the overall
cost of the simulations in addition to the per-time-step
cost of the various anti-aliasing approaches.

3. Results

3.1. Pressure Distributions

The results were first analysed with respect to the
average surface forces on the wing. The time- and
span-averaged surface pressure coefficient distribu-
tions are shown in Figure 2 for the various anti-aliasing
approaches computed with the P3 and P4 approxima-
tions. The experimental results of Elise Swalwell (2005)
are additionally shown for reference. For both approx-
imation orders, all anti-aliasing approaches showed
good predictions of the pressure side surface pressure
coefficient distribution, which is expected due to the
attached flow in the region. On the suction side, where
the highly unsteady separated region makes the flow
physics much more complex, more drastic differences
were observed. At P3, the over-integration approach
showed good agreement with the experimental results,
with only a marginal under-prediction of the (neg-
ative) pressure coefficient aft of the leading edge. In
contrast, the modal filtering approach showed a large
over-prediction of the (negative) pressure coefficient
on the suction side, with a relatively consistent error

Figure 2. Average surface pressure coefficient distribution computed using aP3 approximation (left) andP4 approximation (right) with
over-integration (OI), modal filtering (MF), and entropy filtering (EF). Experimental results of Elise Swalwell (2005) shown for reference.
(a) P3 and (b) P4.
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across the length of the airfoil. In comparison, the
entropy filtering approach showed predictions notably
similar to the over-integration approach with even
better agreement near the leading edge, although the
differences between the two were quite marginal.

When the approximation order was increased to
P4, the variation in the results between the var-
ious approaches diminished. The over-integration
approach showed excellent agreement with the refer-
ence data, marginally better than the over-integration
results at P3. The modal filtering approach showed
the largest difference in the results with increasing
approximation order, with a notable improvement in
the prediction of the suction side pressure coefficient
distribution. However, a noticeable overprediction in
the (negative) pressure coefficient was still observed,
such that the approach showed relatively poor agree-
ment with the experimental data. In contrast, the
entropy filtering approach still showed good agree-
ment with the over-integration results and the exper-
imental results, with only a marginal overprediction
of the (negative) pressure coefficient aft of the leading
edge. Of the three different anti-aliasing techniques,
the over-integration and modal filtering approaches
showed improvements with increasing approximation
order, with over-integration showing very marginal
improvements and modal filtering showing noticeable
improvements. In contrast, the P3 entropy filtering
results were closer to experimental results and the P4
over-integration results, the latter of which can be con-
sidered as the reference numerical results for the given
case setup, than the P4 results, although these differ-
ences were very minor. Interestingly enough, the P3
entropy filtering results were closer to the P4 over-
integration than the P3 over-integration results.

3.2. Force Coefficients

The average lift and drag coefficients as computed
by the various approaches were calculated, and the
error in these coefficients was computed with respect
to the experimental results of Elise Swalwell (2005)
which report a lift coefficient of CL = 0.931 and a
drag coefficient of CD = 1.517. The calculated force
coefficients and errors are tabulated in Table 1. We
remark here that the magnitude of the errors is not
necessarily indicative of the accuracy of the anti-
aliasing approach or the simulation, and errors of
up to 20% have been reported in various numerical

Table 1. Average lift and drag coefficient computed using a P3
and P4 approximation with over-integration (OI), modal filtering
(MF), and entropy filtering (EF). Error computed with respect to
experimental results of Elise Swalwell (2005).

Method CL CD CL error CD error

Experiment 0.931 1.517 – –
P3-OI 1.009 1.650 8.4% 8.7%
P3-MF 1.018 1.680 9.3% 10.8%
P3-EF 0.937 1.562 0.7% 3.0%
P4-OI 0.949 1.563 1.9% 3.0%
P4-MF 0.977 1.625 4.9% 7.1%
P4-EF 0.886 1.475 4.8% 2.7%

experiments (Garbaruk et al. 2003). However, they are
still presented as a point of comparison. At P3, the
entropy filtering results showed the best agreement
with the experimental data, with a 0.7% error in the
lift coefficient and a 3.0% error in the drag coefficient.
While the surface pressure coefficient distributions
of over-integration approach and the entropy filter-
ing approach were very similar, the over-integration
approach showed a significantly larger error in the
force coefficients than the entropy filtering approach,
with an 8.4% error in the lift coefficient and an 8.7%
error in the drag coefficient. This error was on par with
the error from the modal filtering approach which was
marginally higher.When the approximation order was
increased to P4, the over-integration results showed
the best agreement with the experimental data, with
a 1.9% error in the lift coefficient and a 3.0% error
in the drag coefficient. Consistent with the observa-
tions in the surface pressure coefficient distributions,
the P3 entropy filtering results were most similar to
the P4 over-integration results, and the modal filter-
ing approach showed improvements in accuracy with
increasing approximation order whereas the entropy
filtering approach showed a degradation in accuracy.

3.3. Flow Fields

The average flow characteristics were then analysed
with respect to the flow in the separation region on
the suction side of the airfoil. The time- and span-
averaged streamwise velocity contours are shown in
Figure 3 as computed by the varying anti-aliasing
approaches with a P3 approximation. It can be seen
that all approaches predict a similar flow profile, with
a large separation region downstream of the wing.
However, the magnitude of the flow reversal and the
shape of the separation bubble differed, the latter of
which is represented by a red isocontour in the figures.
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Figure 3. Contours of streamwise velocity computed using aP3 approximationwith over-integration (left), modal filtering (middle), and
entropy filtering (right). Zero velocity represented by red isocontour. (a) Over-integration. (b) Modal filter and (c) Entropy filter.

Figure 4. Contours of streamwise velocity computed using aP4 approximationwith over-integration (left), modal filtering (middle), and
entropy filtering (right). Zero velocity represented by red isocontour. (a) Over-integration. (b) Modal filter and (c) Entropy filter.

The over-integration approach and the modal filtering
approach gave very similar predictions of the shape
of the separation region as well as the magnitude of
flow reversal in the core of the separation bubble. In
contrast, the entropy filtering approach showed some
noticeable differences, with a lower degree of maxi-
mum flow reversal in the separation bubble as well
as a marginally taller separation region. Furthermore,
the entropy filtering approach showedmore oscillatory
behaviour along the shear layer in the wake, indicat-
ing that the approach is less dissipative but poten-
tially more prone to predicting spurious instabilities
in the flow, and it is unclear whether this behaviour is
expected to generalise to other problems.

Larger differences between the varying approaches
were observed when the approximation order was
increased to P4, shown by the contours in Figure 4.
With the over-integration approach, the magnitude of
the maximum flow reversal decreased in comparison
to the P3 results, while the shape of the separation
region remained relatively similar. For the modal fil-
tering approach, a large variation in the flow was seen

when increasing the approximation order, with signif-
icant differences in the size and shape of the separation
region as well as the location of the maximum magni-
tude of flow reversal. This can likely be attributed to
the sensitivity of the modal filtering approach to the
choice of filtering parameters, the optimality of which
may be dependent of the approximation order. In com-
parison, the entropy filtering approach did not show
as much of a change in the predicted flow field with
the increase in the approximation order, with relatively
similar predictions of the size and shape of the sep-
aration region. Similarly to the observations for the
body forces and surface pressure coefficient distribu-
tion, the P3 entropy filtering results showed marked
similarities to the P4 over-integration results, with
nearly identical streamwise flow fields between the two
approaches. Furthermore, the oscillatory behaviour
along the shear layer in the wake in the entropy fil-
tering approach diminished with increased approxi-
mation order, showing a similar shear layer profile as
with the other two approaches. This is consistent with
the observations in Dzanic and Witherden (2022) in
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that the entropy filtering approach as a shock capturing
method was more dissipative at higher approximation
orders.

The flow fields were further compared by analysing
the streamwise and normal velocity profiles in the
wake. Two streamwise cross-section locations were
chosen, one at x/c = 1, corresponding to the approx-
imate location of the highest degree of flow reversal,
and one at x/c = 2, corresponding to the approximate
edge of the separation region. The time- and span-
averaged streamwise and normal velocity profiles at
these cross-section locations are shown in Figure 5
as computed by the varying anti-aliasing approaches
with a P3 approximation. At both streamwise loca-
tions, the streamwise velocity profiles between the
three approaches were similar, with only minor dif-
ferences in the peak velocity defect. However, larger
differences could be observed in the normal veloc-
ity profiles. Whereas the over-integration and modal

filtering approaches showed very similar predictions,
the entropy filtering approach predicted a distinct nor-
mal velocity profile in the separation region, showing
a change in inflection near the centreline. Neverthe-
less, these differences diminished farther in the wake,
with similar profiles between the three approaches at
x/c = 2.

With an increase in the approximation order to P4,
more noticeable differences were observed between
the three anti-aliasing approaches. The time- and
span-averaged streamwise andnormal velocity profiles
as computed by the P3 approximation are shown in
Figure 6. In the streamwise velocity profiles, the over-
integration and entropy filtering approaches showed
very similar results, such that the profiles were essen-
tially indistinguishable in both the separation region
and farther in the wake. The modal filtering approach,
however, showed distinct results in the streamwise
profiles, with an underprediction of the velocity defect

Figure 5. Profiles of streamwise velocity (top row) and normal velocity (bottom row) at x/c = 1 (left) and x/c = 2 (right) computed
using a P3 approximation with over-integration (OI), modal filtering (MF), and entropy filtering (EF). (a) x/c = 1 and (b) x/c = 2.
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Figure 6. Profiles of streamwise velocity (top row) and normal velocity (bottom row) at x/c = 1 (left) and x/c = 2 (right) computed
using a P4 approximation with over-integration (OI), modal filtering (MF), and entropy filtering (EF). (a) x/c = 1 and (b) x/c = 2.

in the separation region and an overprediction of the
velocity defect farther in the wake in comparison to
the other two anti-aliasing approaches. We remark
here that these comparisons are strictly with respect
to the differences between the various anti-aliasing
approaches as there is a lack of a well-established ‘true’
solution. The differences between the three approaches
were most pronounced in the normal velocity pro-
files in the separation region. The entropy filtering
approach showed the most pronounced variation in
the normal velocity profile, whereas the modal filter-
ing approach showed the least. The over-integration
approach showed a normal velocity profile very similar
to the results of the P3 anti-aliasing approach, which
is consistent with previous observations. These differ-
ences in the three approaches diminished farther in the
wake, with the profiles at x/c = 2 showing very similar
predictions.

3.4. Force Spectra

The efficacy of the anti-aliasing approacheswas further
evaluated by analysing the temporal statistics of the
force coefficients. The power spectral density (PSD)
of the lift coefficient was computed using Welch’s
averaged periodogram method with a sampling rate
of 1/160tc, window length of 4096, and a shift of
10. The PSD profiles of the various approaches were
compared to the experimental results of Elise Swal-
well (2005), which show two distinct peaks in the
PSD. We remark here that the experimental results
were obtained using a sectional lift coefficient at a
fixed spanwise location instead of the total lift coef-
ficient as per the simulations. As such, the compar-
ison is performed only with respect to the ability of
predicting the frequencies of the dominant peaks in
the PSD.
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Figure 7. Lift coefficient power spectral density computed using a P3 approximation (left) and P4 approximation (right) with over-
integration (OI), modal filtering (MF), and entropy filtering (EF). Experimental results of Elise Swalwell (2005) shown for reference. Primary
and secondary PSD peaks in the experimental data shown as vertical dotted lines. (a) P3 and (b) P4.

The PSD profiles as computed by the three anti-
aliasing approaches are shown in Figure 7 for both the
P3 and P4 approximations. The experimental results
show distinct primary and secondary peaks in the PSD
at Strouhal numbers of St = 0.1994 and St = 0.3987,
respectively. For all anti-aliasing approaches at both
approximation orders, the primary peak was well pre-
dicted in comparison to the experimental results,
within the sampling rate error of the periodogram. It
must be noted though that at P3, the entropy filter-
ing approach showed the most distinct primary peak
that was most similar to the experimental results. In
comparison, the over-integration and modal filtering
approaches showed a broader primary peak. At P4,
both the entropy filtering and over-integration results
showed very similar primary peaks, whereas the pri-
mary peak of the modal filtering results was not as
distinct. For the secondary peak, some variation in
the results was observed. Much like with the primary
peak, the over-integration and entropy-filtering results
showed very similar predictions in both the location
and the prominence of the secondary peak, with good
agreement with the experimental results. This obser-
vation extended to both the P3 and P4 approxima-
tions. However, the modal filtering approach under-
predicted the frequency of the secondary peak at P3,
but this underprediction was not evident in the P4
results.

3.5. Computational Cost

Finally, a comparison of the computational cost of
the various approaches was performed with respect
to both the wall-clock time required to compute one
time step and 10 flows over chord, respectively. The
comparison was performed across 16 NVIDIA V100
GPUs, with the results shown in Figure 8. As expected
due to the large bandwidth and compute requirements
of evaluating the projection, the cost of the over-
integration approach was the highest per time step,
requiring 27% and 225% more compute time than
the entropy filtering and modal filtering approaches,
respectively, at P3. At P4, the computational cost of
the entropy filtering approach increased proportion-
ally more than the other two approaches, such that
the cost of the over-integration approach was only 5%
more than the entropy filtering approach per time step
but still 160%more than the modal filtering approach.

However, while the over-integration approach was
the most costly and the modal filtering approach was
the last costly per time step, the total cost of the three
approaches varied due to the different time step restric-
tions of the respective methods. Due to the larger
possible time step as a result of the increased nonlin-
ear stability properties of entropy filtering, the total
cost of the entropy filtering approach was the low-
est at both P3 and P4, requiring 90.4 GPU hours and
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Figure 8. Wall clock time in NVIDIA V100 GPU hours per time step (left) and per 10 flows over chord (right) using a P3 and P4
approximation with varying anti-aliasing methods. Simulations performed on 16 NVIDIA V100 GPUs. (a) Per time step and (b) Per 10tc .

121.6 GPU hours, respectively, to compute 10 flows
over chord. In contrast, the cost of the over-integration
approach was still the highest, requiring 288.5 GPU
hours and 320 GPU hours, respectively, while the cost
of the modal filtering approach was approximately in
between the two. As such, while the entropy filtering
approach may be costly to evaluate per time step, it
is possible that it may still decrease the overall com-
putational cost of simulating flows which may exhibit
numerical instabilities.

4. Conclusions

In this work, we evaluate the potential of entropy fil-
tering as an anti-aliasing method for high-order dis-
continuous spectral element approximations of under-
resolved turbulent flows. The approach compared to
standard over-integration and modal filtering tech-
niques for the under-resolved implict large eddy sim-
ulation of a NACA0021 airfoil in deep stall at a
Reynolds number of 270,000. It was observed that
the entropy filtering approach could robustly miti-
gate aliasing driven instabilities with accuracy on par
with over-integration methods, showing good agree-
ment with experimental data. Additionally, due to the
lack of tunable parameters, the results of the entropy
filtering approach were more robust and accurate
than the modal filtering approach, but showed some
degradation in accuracy with increased approxima-
tion order. However, the cost of the entropy filtering
approach was substantial per time step, on par with

the over-integration approach and significantly higher
than themodal filtering approach. This additional cost
was mitigated by the larger admissible time step possi-
ble due to the added nonlinear stability of the entropy
filter, such that the total cost of the simulations was
lower with the entropy filtering approach in com-
parison to both over-integration and modal filtering.
These results indicate that the entropy filteringmethod
may be an effective anti-aliasing approach for under-
resolved turbulent flows. Furthermore, the approach
presents a possible unified framework for both shock-
capturing and anti-aliasingwhichmay be beneficial for
the simulation of high-speed turbulent flows.
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