
Computers and Fluids 221 (2021) 104922 

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

Accuracy, stability, and performance comparison between the spectral 

difference and flux reconstruction schemes 

C. Cox 

a , ∗, W. Trojak 

b , T. Dzanic 

b , F.D. Witherden 

b , A. Jameson 

a , b 

a Department of Aerospace Engineering, Texas A&M University, College Station TX 77843, USA 
b Department of Ocean Engineering, Texas A&M University, College Station TX 77843, USA 

a r t i c l e i n f o 

Article history: 

Received 15 July 2020 

Revised 13 February 2021 

Accepted 10 March 2021 

Available online 15 March 2021 

2010 MSC: 

46E39 

46N35 

65M70 

76N15 

Keywords: 

Discontinuous spectral element 

Spectral difference 

Flux reconstruction 

Implicit large eddy simulation 

a b s t r a c t 

We report the development of a discontinuous spectral element flow solver that includes the implemen- 

tation of both spectral difference and flux reconstruction formulations. With this high order framework, 

we have constructed a foundation upon which to provide a fair and accurate assessment of these two 

schemes in terms of accuracy, stability, and performance with special attention to the true spectral dif- 

ference scheme and the modified spectral difference scheme recovered via the flux reconstruction for- 

mulation. Building on previous analysis of the spectral difference and flux reconstruction schemes, we 

provide a novel nonlinear stability analysis of the spectral difference scheme. Through various numerical 

experiments, we demonstrate the additional stability afforded by the true, baseline spectral difference 

scheme without explicit filtering or de-aliasing due to its inherent feature of staggered flux points. This 

arrangement leads to favorable suppression of aliasing errors and improves stability needed for under- 

resolved simulations of turbulent flows. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Computational fluid dynamics presents practitioners with many 

hallenges, chief among which is resolving the often wide range 

f length scales while keeping computational cost sufficiently low. 

his is crucial if such simulations are to meaningfully impact en- 

ineering design cycles. Reynolds-Averaged Navier-Stokes (RANS) 

ethods, the prevailing mode of choice in the industry, have ex- 

ibited significant shortcomings in simulating complex turbulent 

ows, and as such, there is considerable interest in the devel- 

pment of high-fidelity scale-resolving simulations. Although far 

uperior in terms of accuracy, these scale-resolving simulations 

an be orders of magnitude more computationally expensive than 

heir RANS counterparts which makes them intractable for many 

ractical engineering purposes. To address this challenge, vari- 

us families of methods have emerged over several decades, one 

f which is the spectral element method (SEM), a set of high- 

rder techniques that has been successfully used for many ap- 
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lications. These methods developed out of discontinuous tech- 

iques, such as that of Reed and Hill [1] , which forwent some 

olution continuity in favor of localizing the calculation to sub- 

omains. This sub-domain structure—with reduced inter-element 

ommunication—can increase the computational efficiency through 

tructured compute regions that are well suited to modern mas- 

ively parallel computer architectures such as graphic processing 

nits (GPU). 

Discontinuous SEM offers geometric flexibility and reduced dis- 

ipation/dispersion errors for high-fidelity computations; however, 

pplication of these schemes to turbulent flow problems can be 

roblematic due to numerical instability issues. As the cost of re- 

olving the finest physical length scales grows prohibitively large 

ith increasing Reynolds number, scale-resolving simulations are 

ypically restricted to resolving only the statistically significant 

ength scales. For a sufficiently high-order scheme, this lack of res- 

lution can cause aliasing errors to occur and produce unstable 

imulations [2] . These errors originate from the high-order of the 

ux function and/or the geometry and limit the space in which 

he approximate solution can reside [3] . To ameliorate these er- 

ors and achieve stability, various techniques have been introduced, 

uch as spectral vanishing viscosity methods (SVV) [4–7] , modal 

ltering [8–11] , and split skew-symmetric methods [12–15] . How- 

ver, these techniques do come with a notable computational cost 
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nd, in some cases, tunable parameters, and it has become com- 

onplace to perform simulations without explicit filtering or de- 

liasing applied to the solution. One such approach in the con- 

ext of solving turbulent flows with discontinuous SEM is implicit 

arge eddy simulation (ILES) [16–20] , from which high-fidelity so- 

utions can be obtained without any added modeling or filtering 

raditionally used to account for sub-grid length scales by utilizing 

he inherent numerical dissipation of the scheme. However, this 

issipation may be insufficient when using high-order discretiza- 

ions for high Reynolds number turbulent flows, and it is not yet 

vident which method is best suited for robustly achieving stable 

nd accurate simulations for these flows. There is speculation that 

ertain methods may have more favorable de-aliasing properties 

hich can result in improvements in stability, although it has not 

een thoroughly explored. 

In this paper, we investigate two nodal discontinuous spec- 

ral element methods with several similarities. The first method 

s the flux reconstruction (FR) method of Huynh [21] and Vin- 

ent et al. [22] . This method uses a local polynomial approxima- 

ion of the solution to form an approximation to the flux such 

hat continuity is enforced through inter-element communication 

nd correction functions. This method has been adapted for sev- 

ral element topologies [23] and has been applied to various 

quation sets including the Euler equations [24,25] , Navier–Stokes 

quations [24,26] , and their incompressible counterparts [27,28] . 

everal implementations of FR are available that have demon- 

trated the possibility to achieve high computational efficiency 

nd scalability on large problems [29,30] . The second method is 

he spectral difference (SD) method originally put forth by Ko- 

riva et al. [31,32] , where a staggered arrangement of points is 

sed within each element, with one set of points for the solu- 

ion and another for the flux and its gradient. The formal stability 

f this method for linear problems was explored by Jameson [33] , 

ho found a Lobatto-type distribution for the flux points to be im- 

ortant. Furthermore, Huynh [21] found that the accuracy of the 

cheme is independent of the solution point locations for linear 

roblems. Similar to FR, this method has been successfully applied 

o non-linear equations [34–36] as well as in the simulation of 

omplex physics [37–40] . 

The SD method is of interest as the approximation of the flux 

unction, which is projected into the solution space through dif- 

erentiation, is one degree higher than the solution. It is conjec- 

ured that this increased order of the flux equips SD with a favor- 

ble amount of de-aliasing in comparison to FR. In the body of SD 

nd FR literature, there has been little comparative study between 

hese related methods and the effect that different techniques for 

he flux function approximation will have on the stability and ac- 

uracy of the methods. We investigate the differences and similar- 

ties for these schemes when used in ILES, and show the effects of 

he higher degree of the flux approximation on the stability of the 

ethod. To this end, this work is structured with the formulation 

f SD and FR schemes on hyper-cube elements in Section 2 . Non- 

inear analysis of the SD method is presented in Section 3 , where 

he instability mechanics are considered as well as scaling argu- 

ents for the error. Section 4 sets forth the formulation used for 

he Navier–Stokes equations and Section 5 details results from nu- 

erical experiments for a series of test cases. Finally, conclusions 

re drawn in Section 6 . 

. Discontinuous spectral element formulations on hexahedral 

lements 

For the sake of completeness, we briefly describe in the follow- 

ng sections the SD and FR schemes on tensor product hexahedral 

lements such that a self-contained comparison of the different 

ormulations can be made. 
2 
.1. Element mapping 

We will begin by prescribing the shared definitions for par- 

itioning the domain, reference domain, and how transformation 

rom the reference domain and physical domain are constructed. 

he arbitrary connected solution domain � ⊂ R 

3 is partitioned 

nto N e non-overlapping, conforming, hexahedral elements, each 

enoted by �e , such that 

= 

N e ⋃ 

e =1 

�e , 

N e ⋂ 

e =1 

�e = ∅ . (1) 

ach three-dimensional physical element �e is mapped to a ref- 

rence element �r = { ξ , η, β | − 1 � ξ , η, β � 1 } thr ough a map- 

ing of the form 

 (ξ , η, β) = 

K ∑ 

k =1 

x k φk (ξ , η, β) , (2) 

here K is the number of nodes per element �e , x k = (x k , y k , z k )

re nodal Cartesian coordinates, and φk ( ξ , η, β) are the nodal 

hape functions. After transformation into the computational do- 

ain, the governing equations in Eq. (42) can be re-written in the 

orm 

∂ ̂  U 

∂t 
+ 

∂ ̂  f 

∂ξ
+ 

∂ ̂  g 

∂η
+ 

∂ ̂  h 

∂β
= 0 (3) 

here the relationship between physical and reference quantities 

or a stationary mesh is given by 

ˆ 
 = | J | U , 

⎡ 

⎣ 

ˆ f 
ˆ g 
ˆ h 

⎤ 

⎦ = | J | J −1 

[ 

f 
g 
h 

] 

. (4) 

or stationary grids, the Jacobian is defined as J = 

(x, y, z) /∂(ξ , η, β) , and the metric terms are computed us- 

ng the conservative curl form of Kopriva [41] , which is identical 

o the form introduced by Thomas and Lombard [42] . This infor- 

ation is needed at both the solution and flux points within each 

eference element in accordance with the spectral difference and 

ux reconstruction methodologies described in Sections 2.2 and 

.3 . 

.2. Spectral difference 

Following the original work of Kopriva and Kolias [31,32] and 

ui et al. [43] , we briefly describe here the three-dimensional spec- 

ral difference formulation for which the distribution of solution 

oints in a reference cube can be interpreted from the distribution 

f points in the reference square shown in Fig. 1 a. In this two- 

imensional representation, the number of solution points (blue 

ircles) along each direction is four—these points, representing a 

olynomial of order p = 3 , are located at Gauss–Legendre quadra- 

ure points. The number of flux points (black squares) along each 

irection is one higher than the number of solution points—these 

oints are also located at Gauss–Legendre quadrature points in the 

nterior plus the two end points at -1 and 1. Using the p + 1 so-

ution points and the p + 2 flux points, two sets of Lagrange inter- 

olating polynomials—of degree p and p + 1 —along the ξ direction 

an be built using 

 i (ξ ) = 

p +1 ∏ 

s =1 
s � = i 

(
ξ − ξs 

ξi − ξs 

)
∀ i ∈ { 1 , . . . , p + 1 } , (5a) 

 i + 1 2 
(ξ ) = 

p +1 ∏ 

s =0 
s � = i 

( ξ − ξs + 1 2 

ξi + 1 2 
− ξs + 1 2 

)
∀ i ∈ { 0 , . . . , p + 1 } , (5b) 
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Fig. 1. Distribution of solution points (SP •) and flux points (FP �) with p = 3 for (a) spectral difference method and (b) flux reconstruction method inside a reference 

element �r . 
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ith analogous definitions made for the η and β directions. Here 

t can be observed that l i (ξs ) = δis , and the complete polynomial 

pproximation can be obtained within �r through tensor products 

f the three p degree one-dimensional Lagrange polynomials by 

 

δ
r (ξ , η, β) = 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ U 

δ

r| i, j,k 

| J r| i, j,k | l i (ξ ) l j (η) l k (β) (6) 

here ˆ U 

δ
r| i, j,k = 

ˆ U 

δ
r (ξi , η j , βk ) are the nodal coefficients of the so- 

ution in �r that represent the value of the approximate solution 

olynomial ˆ U 

δ
r evaluated at the set of solution points. The values 

f the flux vectors can be obtained in a similar manner, but in- 

tead by using the three p + 1 degree one-dimensional polynomi- 

ls h 

i + 1 
2 
, h 

j+ 1 
2 

and h 

k + 1 
2 

by 

ˆ f 
δ

r (ξ , η, β) = 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =0 

ˆ f 
δ

r| i + 1 2 , j,k h i + 1 2 
(ξ ) l j (η) l k (β) , (7a) 

ˆ 
 

δ
r (ξ , η, β) = 

p +1 ∑ 

k =1 

p +1 ∑ 

j=0 

p +1 ∑ 

i =1 

ˆ g 
δ
r| i, j+ 1 2 ,k 

l i (ξ ) h j+ 1 2 
(η) l k (β) , (7b) 

ˆ 
 

δ

r (ξ , η, β) = 

p +1 ∑ 

k =0 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ h 

δ

r| i, j,k + 1 2 
l i (ξ ) l j (η) h k + 1 2 

(β) . (7c) 

The nodal coefficients, ˆ f 
δ

r| i +1 / 2 , j,k = 

ˆ f 
δ

r (ξi +1 / 2 , η j , βk ) , of the ap- 

roximate discontinuous fluxes, ˆ f 
δ

r , are computed from the solu- 

ion at the flux points ˆ U r| i +1 / 2 , j,k obtained by Eq. (6) . Similar ex- 

ressions can be defined for ˆ g 
δ

and 

ˆ h 

δ
. The gradients at the so- 

ution points are computed using the solution at the flux points 

ith the derivative of the Lagrange polynomial approach (see 

un et al. [35] ). The gradients can then be interpolated from the 

olution points to the flux points using a similar Lagrange interpo- 

ation approach given in Eq. (6) to obtain the terms ˆ ∇ ̂

 U 

δ
r| i +1 / 2 , j,k , 

ˆ 
 ̂

 U 

δ
r| i, j+1 / 2 ,k , and 

ˆ ∇ ̂

 U 

δ
r| i, j,k +1 / 2 . These gradients are needed only for 

valuation of the viscous fluxes. 

The common inviscid flux ˆ f 
δI 

e ( U 

δ
L , U 

δ
R ) at an interface between 

lements in the reference space can be computed using any suit- 

ble approximate or exact Riemann solver, where the subscripts L 

nd R denote left and right states of an interface . Similar expres- 

ions can be defined for ˆ g 
δI 
e and 

ˆ h 

δI 

e . In the SD implementation, the 
3 
ommon viscous fluxes such as ˆ f 
δI 

v ( U 

δ
L , ∇ U 

δ
L , U 

δ
R , ∇ U 

δ
R ) are com-

uted using an approach analogous to inviscid Riemann solvers. In 

his work, we use the simple averaging approach from Bassi and 

ebay (BR1) [44] . Note that the fluxes in Eqs. (7a) - (7c) are con-

inuous within each element, but discontinuous across element in- 

erfaces. Globally continuous fluxes can be achieved in SD by re- 

lacing the interpolated values of the fluxes at element interfaces 

denoted by a 1 / 2 or p + 3 / 2 index) with the common fluxes such

hat derivatives of the continuous fluxes can then be written as 

∂ ̂  f 
δC 

r 

∂ξ
= 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

[
ˆ f 
δI 

r| 1 2 , j,k 

d h 1 
2 
(ξ ) 

d ξ
+ 

ˆ f 
δI 

r| p + 3 2 , j,k 

d h p + 3 2 
(ξ ) 

d ξ

+ 

p ∑ 

i =1 

ˆ f 
δ

r| i + 1 2 , j,k 

d h i + 1 2 
(ξ ) 

d ξ

]
l j (η) l k (β) , (8a) 

∂ ̂  g 
δC 
r 

∂η
= 

p +1 ∑ 

k =1 

p +1 ∑ 

i =1 

[
ˆ g 
δI 
r| i, 1 2 ,k 

d h 1 
2 
(η) 

d η
+ ̂

 g 
δI 
r| i, p + 3 2 ,k 

d h p + 3 2 
(η) 

d η

+ 

p ∑ 

j=1 

ˆ g 
δ
r| i, j+ 1 2 ,k 

d h j+ 1 2 
(η) 

d η

]
l i (ξ ) l k (β) , (8b) 

∂ ̂  h 

δC 

r 

∂β
= 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

[
ˆ h 

δI 

r| i, j, 1 2 

d h 1 
2 
(β) 

d β
+ 

ˆ h 

δI 

r| i, j, p + 3 2 

d h p + 3 2 
(β) 

d β

+ 

p ∑ 

k =1 

ˆ h 

δ

r| i, j,k + 1 2 

d h k + 1 2 
(β) 

d β

]
l i (ξ ) l j (η) . (8c) 

.3. Flux reconstruction 

Following the original work by Huynh [21,45] , we briefly de- 

cribe here the three-dimensional flux reconstruction formulation 

or which the distribution of solution points in a reference cube 

an be interpreted from the distribution of points in the reference 

quare shown in Fig. 1 b. In this 2D representation, the number of 

olution points (blue circles) along each direction is four—these 

oints, representing a polynomial of order p = 3 , are located at 

auss–Legendre quadrature points. The flux points (black squares) 

long each direction are located at the two end points at -1 and 

. Using the solution at the p + 1 solution points, a p degree La- 

range interpolating polynomial along each ξ , η, and β direction 

an be constructed using Eq. (5a) . Tensor products may once again 
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e applied on the one dimensional Lagrange polynomial to obtain 

 complete approximation of the solution and the fluxes by 

 

δ
r (ξ , η, β) = 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ U 

δ

r| i, j,k 

| J r| i, j,k | l i (ξ ) l j (η) l k (β) , (9a) 

ˆ f 
δ

r (ξ , η, β) = 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ f 
δ

r| i, j,k l i (ξ ) l j (η) l k (β) , (9b) 

ˆ 
 

δ
r (ξ , η, β) = 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ g 
δ
r| i, j,k l i (ξ ) l j (η) l k (β) , (9c) 

ˆ 
 

δ

r (ξ , η, β) = 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ h 

δ

r| i, j,k l i (ξ ) l j (η) l k (β) . (9d) 

In FR, as in SD, the nodal coefficients, ˆ f 
δ

r| i, j,k = 

ˆ f 
δ

r (ξi , η j , βk ) , of

he approximate discontinuous fluxes ˆ f 
δ

r are computed from 

ˆ U 

δ
r| i, j,k 

nd 

ˆ ∇ ̂

 U 

δ
r| i, j,k , where the latter term is only required for the viscous 

uxes. Similar expressions can be defined for ˆ g 
δ

and 

ˆ h 

δ
. In accor- 

ance with the methodology of the flux reconstruction scheme, the 

ontinuous flux functions defined along ξ , η and β directions can 

e written as 

ˆ f 
δC 

r = 

ˆ f 
δ

r + 

[
ˆ f 
δI 

r− 1 
2 

− ˆ f 
δ

r (−1 , η, β) 
]
g LB (ξ ) + 

[
ˆ f 
δI 

r+ 1 2 
− ˆ f 

δ

r (1 , η, β) 
]
g RB (ξ ) , 

(10a) 

ˆ 
 

δC 
r = ̂

 g 
δ
r + 

[
ˆ g 
δI 
r− 1 

2 
− ˆ g 

δ
r (ξ , −1 , β) 

]
g LB (η) + 

[
ˆ g 
δI 
r+ 1 2 

− ˆ g 
δ
r (ξ , 1 , β) 

]
g RB (η) , 

(10b) 

ˆ 
 

δC 

r = 

ˆ h 

δ

r + 

[
ˆ h 

δI 

r− 1 
2 

− ˆ h 

δ

r (ξ , η, −1) 
]
g LB (β) + 

[
ˆ h 

δI 

r+ 1 2 
− ˆ h 

δ

r (ξ , η, 1) 
]
g RB (β) 

(10c) 

here g LB and g RB represent left boundary (LB) and right bound- 

ry (RB) correction functions in the reference element, respectively. 

 stable correction function as defined by Huynh [21] and Vin- 

ent et al. [22] can be generalized for the left boundary as 

 LB (ξ ) = αR R, p +1 (ξ ) + (1 − α) R R, p (ξ ) (11) 

here R R, (·) (ξ ) represents the right Radau polynomial [46] . The 

xpression for a correction to the right boundary is obtained sim- 

ly by reflection of g LB (ξ ) such that g RB (ξ ) = g LB (−ξ ) on the

nterval �r = { ξ | − 1 � ξ � 1 } . Choosing α = 1 for the correc-

ion function in Eq. (11) recovers the collocation based nodal DG 

ethod. Alternatively, choosing α = ( p + 1) / (2 p + 1) recovers a 

odified SD method—in the current work, it is this scheme to 

hich we directly compare true SD. Another type of scheme can 

e obtained by setting α = p / (2 p + 1) , which leads to the lumped

obatto g 2 scheme identified by Huynh [21] that collocates so- 

ution points with the Lobatto points. These three schemes are 

eferred to herein as FR DG , FR SD , and FR 2 , respectively. Lastly, 

omero et al. [47] provided a simplified formulation of the FR 

cheme that substitutes a Lagrange interpolation operation for the 

orrection functions. They offered a proof of equivalence of their 

cheme to FR DG , provided that solution points are placed at the 

orresponding Gauss–Legendre points. This method is referred to 

s direct FR ( DFR ) [47,48] . 
4 
From Eqs. (10a) - (10c) , we can obtain the derivatives of the con- 

inuous flux functions 

∂ ̂  f 
δC 

r 

∂ξ
= 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ f 
δ

r| i, j,k 
d l i (ξ ) 

d ξ
l j (η) l k (β) 

+ 

[
ˆ f 
δI 

r− 1 
2 

− ˆ f 
δ

r (−1 , η, β) 
]d g LB (ξ ) 

d ξ

+ 

[
ˆ f 
δI 

r+ 1 2 
− ˆ f 

δ

r (1 , η, β) 
]d g RB (ξ ) 

d ξ
, 

(12a) 

∂ ̂  g 
δC 
r 

∂η
= 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ g 
δ
r| i, j,k l i (ξ ) 

d l j (η) 

d η l k (β) 

+ 

[
ˆ g 
δI 
r− 1 

2 
− ˆ g 

δ
r (ξ , −1 , β) 

]
d g LB (η) 

d η

+ 

[
ˆ g 
δI 
r+ 1 2 

− ˆ g 
δ
r (ξ , 1 , β) 

]
d g RB (η) 

d η , 

(12b) 

∂ ̂  h 

δC 

r 

∂β
= 

p +1 ∑ 

k =1 

p +1 ∑ 

j=1 

p +1 ∑ 

i =1 

ˆ h 

δ

r| i, j,k l i (ξ ) l j (η) d l k (β) 
d β

+ 

[
ˆ h 

δI 

r− 1 
2 

− ˆ h 

δ

r (ξ , η, −1) 
]

d g LB (β) 
d β

+ 

[
ˆ h 

δI 

r+ 1 2 
− ˆ h 

δ

r (ξ , η, 1) 
]

d g RB (β) 
d β

. 

(12c) 

In the FR implementation, the common viscous fluxes are 

omputed using a BR2-type, second procedure of Bassi and Re- 

ay [49] to achieve compactness of the stencil in multiple dimen- 

ions. The difference in computing the common, interface viscous 

uxes under SD and FR stems from the fact that within FR the 

orrections functions can be used to correct not only the discon- 

inuous flux, but also the discontinuous solution using the jump 

n solution at the interface in order to form a piecewise polyno- 

ial function that is continuous at element interfaces. Applying 

he reconstruction methodology to the solution in this way con- 

ects it to the BR2 concept, and we can compute the derivative 

f the ‘corrected’ function and average left and right ‘corrected’ 

tates of an interface to obtain the derivative of the common solu- 

ion needed to compute the viscous numerical flux. Although it is 

hought that a BR2 type of scheme contributes to stability, we nev- 

rtheless demonstrate in Section 5.5 that true SD can be more sta- 

le than FR for implicit large eddy simulations of transitional flow. 

e refer the reader to Huynh [45] for further details on computing 

ommon gradients within FR. 

Once the divergence of the continuous flux is obtained by 

qs. (8a) - (8c) for the spectral difference scheme or Eqs. (12a) - (12c)

or the flux reconstruction scheme, an appropriate time stepping 

echnique can be applied to march the solution forward in time. 

he implementation of both schemes is done within a single cod- 

ng framework such that fair and proper comparisons of the two 

ethodologies can be made in terms of stability, accuracy, and per- 

ormance. 

. Nonlinear stability of spectral difference 

In the work of Jameson et al. [50] , the non-linear stability of 

he flux reconstruction method was investigated, and it was found 

hat the solution decay could be decomposed into a stable compo- 

ent and a non-linear component which can cause instabilities. As 

his analysis was useful in understanding the mechanism by which 

on-linearities affect stability and how de-aliasing methods can 

itigate this, we will perform a similar analysis for the spectral 

ifference method in order to highlight the differences that arise 

etween these two techniques. 

Consider a scalar conservation law in one dimension 

∂u + 

∂ f = 0 , (13) 

∂t ∂x 
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here the lower-case terms denote a scalar quantity. This may be 

ast in the reference domain as 

∂ ̂  u 

δ

∂t 
+ 

∂ ˆ f δ

∂ξ
= 0 . (14) 

s was introduced in the previous section, the approximate flux ˆ f δ

n the FR and SD methodologies is replaced by a corrected flux ˆ f δC 

hat enforces C 0 continuity in the flux between elements. A similar 

xpression for the corrected flux used in the flux reconstruction 

ethod can be written for the spectral difference method as 

ˆ f δC = 

ˆ f δ + 

(
ˆ f δI 
L − ˆ f δL 

)
h 1 

2 
+ 

(
ˆ f δI 
R − ˆ f δR 

)
h p + 3 2 

. 

or brevity, we temporarily drop the subscript r and refer to left 

nd right interfaces of a given element with the subscripts L and 

 . Therefore, 

∂ ̂  u 

δ

∂t 
= −∂ ˆ f δ

∂ξ
−
(

ˆ f δI 
L − ˆ f δL 

)d h 1 
2 

d ξ
−
(

ˆ f δI 
R − ˆ f δR 

)d h p + 3 2 

d ξ
. (15) 

o analyze stability in a norm that induces a Sobolev space, namely 

 ̂

 v ‖ 

2 
W 2 , p ,c 

= 

∫ 1 

−1 

ˆ v 2 + 

c 

2 

(
∂ p ˆ v 
)

2 d ξ , (16) 

e investigate the behavior of 

d 

d t 
‖ ̂

 v ‖ 

2 
W 2 , p ,c 

= 

d 

d t 

∫ 1 

−1 

ˆ v 2 + 

c 

2 

(
∂ p ˆ v 
)

2 d ξ . (17) 

By taking Eq. (15) and, following the work of Jame- 

on et al. [50] , multiplying it by ˆ u δ and integrating, we obtain 

1 

2 

d 

d t 

∫ 1 

−1 

( ̂  u 

δ ) 2 d ξ = −
∫ 1 

−1 

ˆ u 

δ ∂ ˆ f δ

∂ξ
d ξ −

(
ˆ f δI 
L − ˆ f δL 

)∫ 1 

−1 

ˆ u 

δ
d h 1 

2 

d ξ
d ξ

−
(

ˆ f δI 
R − ˆ f δR 

)∫ 1 

−1 

ˆ u 

δ
d h p + 3 2 

d ξ
d ξ . (18) 

pon using the product rule, this may be rewritten as 

1 
2 

d 
d t 

∫ 1 
−1 ( ̂  u 

δ ) 2 d ξ = 

∫ 1 
−1 

ˆ f δ ∂ ̂ u δ

∂ξ
d ξ

+ 

(
ˆ f δI 
L − ˆ f δL 

) ∫ 1 
−1 h 1 

2 

d ̂ u δ

d ξ
d ξ

+ 

(
ˆ f δI 
R − ˆ f δR 

) ∫ 1 
−1 h p + 3 2 

d ̂ u δ

d ξ
d ξ + 

(
ˆ f δI 
L 

ˆ u 

δ
L − ˆ f δI 

R 
ˆ u 

δ
R 

)
. 

(19) 

urthermore, taking Eq. (15) and differentiating it p times gives 

∂ 

∂t 

(
∂ p ˆ u 

δ

∂ξp 

)
= −∂ p +1 ˆ f δ

∂ξp +1 
−
(

ˆ f δI 
L − ˆ f δL 

)d 

p +1 h 1 
2 

d ξp +1 

−
(

ˆ f δI 
R − ˆ f δR 

)d 

p +1 h p + 3 2 

d ξp +1 
. (20) 

 key difference between this derivation and that for the flux re- 

onstruction method is that ˆ f δ is a polynomial of degree p + 1 , 

nd therefore the first term on the right-hand side is not zero, but 

 constant. If Eq. (19) is then multiplied by the p 

th derivative of ˆ u δ

nd integrated, the following is obtained 

1 

2 

d 

d t 

∫ 1 

−1 

(
∂ p ˆ u 

δ

∂ξp 

)
2 d ξ = −

∫ 1 

−1 

∂ p +1 ˆ f δ

∂ξp +1 

∂ p ˆ u 

δ

∂ξp 
d ξ

−
(

ˆ f δI 
L − ˆ f δL 

)∫ 1 

−1 

∂ p ˆ u 

δ

∂ξp 

d 

p +1 h 1 
2 

d ξp +1 
d ξ

−
(

ˆ f δI 
R − ˆ f δR 

)∫ 1 

−1 

∂ p ˆ u 

δ

∂ξp 

d 

p +1 h p + 3 2 

d ξp +1 
d ξ , (21) 

hich, in turn, may be written as 

1 

2 

d 

d t 

∫ 1 

−1 

(
∂ p ˆ u 

δ

∂ξp 

)
2 d ξ = −2 

∂ p +1 ˆ f δ

∂ξp +1 

∂ p ˆ u 

δ

∂ξp 
5 
−2 

(
ˆ f δI 
L − ˆ f δL 

)
∂ p ˆ u 

δ

∂ξp 

d 

p +1 h 1 
2 

d ξp +1 
−2 

(
ˆ f δI 
R − ˆ f δR 

)
∂ p ˆ u 

δ

∂ξp 

d 

p +1 h p + 3 2 

d ξp +1 
. (22) 

y combining Eqs. (19) and (22) and taking the norm as given by 

q. (16) , we then obtain 

1 
2 

d 
d t 

‖ ̂

 u 

δ‖ 

2 
W 2 , p ,c 

= 

∫ 1 
−1 

ˆ f δ ∂ ̂ u δ

∂ξ
d ξ + 

(
ˆ f δI 
L − ˆ f δL 

)∫ 1 
−1 h 1 

2 

d ̂ u δ

d ξ
d ξ

+ 

(
ˆ f δI 
R − ˆ f δR 

)∫ 1 
−1 h p + 3 2 

d ̂ u δ

d ξ
d ξ − c ∂ 

p +1 ˆ f δ

∂ξp +1 
∂ p ˆ u δ

∂ξp 

− c 

(
ˆ f δI 
L − ˆ f δL 

)
∂ p ˆ u δ

∂ξp 

d p +1 h 1 
2 

d ξp +1 − c 

(
ˆ f δI 
R − ˆ f δR 

)
∂ p ˆ u δ

∂ξp 

d p +1 h 
p + 3 

2 

d ξp +1 + 

(
ˆ f δI 
L 

ˆ u 

δ
L − ˆ f δI 

R 
ˆ u 

δ
R 

)
. 

(23) 

To proceed further, we refer to the work of 

uynh et al. [21] who showed that for the linear case, SD 

ould be recovered from FR for a given correction function. This 

orrection function, which we denote as g, recovered SD when the 

D flux points were formed from the p degree Gauss–Legendre 

uadrature points with points added at −1 and 1. This is the 

ogical choice as Jameson et al. [33] showed that these points 

esulted in the only SD scheme with provable linear stability. The 

onnection between the SD and FR formulations is given by 

 1 
2 

= g L and h p + 3 2 
= g R . (24) 

herefore, we may write Eq. (23) as 

1 
2 

d 
d t 

‖ ̂

 u 

δ‖ 

2 
W 2 , p ,c 

= 

∫ 1 
−1 

ˆ f δ ∂ ̂ u δ

∂ξ
d ξ + 

(
ˆ f δI 
L − ˆ f δL 

) ∫ 1 
−1 g L 

d ̂ u δ

d ξ
d ξ

+ 

(
ˆ f δI 
R − ˆ f δR 

)∫ 1 
−1 g R 

d ̂ u δ

d ξ
d ξ

− c ∂ 
p +1 ˆ f δ

∂ξp +1 
∂ p ˆ u δ

∂ξp − c 

(
ˆ f δI 
L − ˆ f δL 

)
∂ p ˆ u δ

∂ξp 

d p +1 g L 
d ξp +1 

−c 

(
ˆ f δI 
R − ˆ f δR 

)
∂ p ˆ u δ

∂ξp 

d p +1 g R 
d ξp +1 + ( ̂  f δI 

L 
ˆ u 

δ
L − ˆ f δI 

R 
ˆ u 

δ
R ) , 

(25) 

nd from Vincent et al. [22] , we use 

 1 

−1 

g L 
∂ ̂  u 

δ

∂ξ
d ξ − c 

∂ p ˆ u 

δ

∂ξp 

d 

p +1 g L 
d ξp +1 

= 0 , (26a) 

 1 

−1 

g R 
∂ ̂  u 

δ

∂ξ
d ξ − c 

∂ p ˆ u 

δ

∂ξp 

d 

p +1 g R 
d ξp +1 

= 0 , (26b) 

hich reduces Eq. (25) to 

1 

2 

d 

d t 
‖ ̂  u δ‖ 2 W 2 , p ,c 

= 

∫ 1 

−1 

ˆ f δ
∂ ̂  u δ

∂ξ
d ξ + 

(
ˆ f δI 
L ˆ u δL − ˆ f δI 

R ˆ u δR 

)
− c 

∂ p +1 ˆ f δ

∂ξp +1 

∂ p ˆ u δ

∂ξp 
. (27) 

f the broken norm is then constructed from this for N elements 

n a periodic domain, we obtain 

1 

2 

d 

d t 
‖ u 

δ‖ 

2 
W 2 , p ,c 

= 
 + 

N−1 ∑ 

i =0 

εi − c 

N−1 ∑ 

i =0 

∂ p +1 f δ

∂x p +1 

∂ p u 

δ

∂x p 
, (28) 

here 

i = 

∫ 
�i 

( f δ − f ) 
∂u 

δ

∂x 
d x. (29) 

ere, the term 
 is the interface contribution to the stability for 

hich a full derivation can be found in [50] , and the reader is re-

erred to that work for a more complete derivation. If the common 

nterface values are set such that they form an E-flux [51,52] , then 

� 0 and therefore the stability is controlled by the latter two 

erms. In contrast, the last term is not present in FR, the sign of 

his contribution is unknown and may have either a stabilizing or 

estabilizing effect for SD. However what may be concluded is that 

he difference in stability is solely driven by the contribution of the 

ighest order mode of the flux and solution. 
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To illustrate more clearly the effect that the difference between 

he schemes has on the approximation of the flux gradient, we will 

ow examine the error scaling. Using theorems and corollaries pre- 

ented by Bernardi and Maday [53] , we further analyze the behav- 

or of the error in the flux evaluated in the L 2 norm 

∂ f 

∂x 
− ∂ f δC 

∂x 

∥∥∥
L 2 

. 

hroughout, we adopt a similar notation to Bernardi and Ma- 

ay [53] , where we define the Sobolev space 

 

k (X ) = 

{ 
v ∈ L 2 (X ) | ∀ m ∈ N , m � k, ∂ m v ∈ L 2 (X ) 

} 
, 

here X is an open, bounded, Lipschitz-continuous set of R , and 

he norm induced on the space H 

k is 

 u ‖ H k = 

√ ∫ 
X 

k ∑ 

m =0 

(
∂ m u 

)
2 d x . (30) 

o analyze the behavior of the flux error, we establish two neces- 

ary theorems. 

heorem 3.1. (See Bernardi and Maday [53] , Thm. 13.2.) For some 

unction u ∈ H 

k with k > 1 / 2 and the Lagrange interpolation operator

 p g ∈ P p such that I p g(ζi ) = g(ζi ) for some set of points { ζi } i � p +1 ,

he following estimate holds 

 u − I p u ‖ L 2 � C(k )( p + 1) −k ‖ u ‖ H k , (31)

or some constant C that is only dependent on k . 

heorem 3.2. (See Bernardi and Maday [53] , Thm. 13.4.) For some 

unction u ∈ H 

k with real numbers k and r such that k � 1 and r < k

nd the Lagrange interpolation operator I p g defined in Thm. 3.1 , the 

ollowing estimates hold 

 u − I p u ‖ H r � 

{
C( p + 1) 3 r/ 2 −k ‖ u ‖ H k if r � 1 , 

C( p + 1) 2 r−1 / 2 −k ‖ u ‖ H k if r � 1 . 
(32) 

With these theorems established, we look to determine the 

ound on 

∂ f 

∂x 
− ∂ f δC 

∂x 

∥∥∥
L 2 

= 

∥∥∥∂ f 

∂x 
−
[ 
∂ f δ

∂x 
+ 

(
f δI 
L − f δL 

)d g L 
d x 

+ 

(
f δI 
R − f δR 

)d g R 
d x 

] ∥∥∥
L 2 

. 

(33) 

rom the triangle inequality, this may be rewritten as 

∂ f 

∂x 
− ∂ f δC 

∂x 

∥∥∥
L 2 

� 

∥∥∥ ∂ f 

∂x 
− ∂ f δ

∂x 

∥∥∥
L 2 

+ 

∣∣ f δI 
L − f δL 

∣∣∥∥∥d g L 
d x 

∥∥∥
L 2 

+ 

∣∣ f δI 
R − f δR 

∣∣∥∥∥d g R 
d x 

∥∥∥
L 2 

. 

(34) 

e impose that the left interface values take the form 

f δI 
r| L = κL f 

δ
r−1 | R + (1 − κL ) f 

δ
r| L , for κL ∈ [0 , 1] , (35)

here r denotes the element index and κL controls the degree of 

nterface upwinding. We impose similar behavior at the right in- 

erface with κR . We may then write 

∂ f 

∂x 
− ∂ f δC 

∂x 

∥∥∥
L 2 

� 

∥∥∥∂ f 

∂x 
− ∂ f δ

∂x 

∥∥∥
L 2 

+ κL 

∣∣ f δr−1 | R − f δr| L 
∣∣∥∥∥d g L 

d x 

∥∥∥
L 2 

+ κR 

∣∣ f δr| R − f δr+1 | L 
∣∣∥∥∥d g R 

d x 

∥∥∥
L 2 

. (36) 

s the true interface term is the same for both sides of the inter- 

ace, we may write 

L 

(
f δr−1 | R − f δr| L 

)
= κL 

(
f δr−1 | R − f r−1 | R + f r| L − f δr| L 

)
, (37) 

hich can be generalized for the other interface. Under the as- 

umption that f is a high-order function of u such that if u ∈ H 

k 
6 
hen f ∈ H 

mk for m � 1 , the interface correction will scale with the

nterpolation error of f

L 

∣∣ f δr−1 | R − f δr| L 
∣∣ � κL C( p + 2) −mk ‖ f‖ H mk . (38) 

t is then straightforward to prove the following bound for a La- 

range polynomial 

d h i + 1 2 

d x 

∥∥∥
L 2 

� C( p + 2) , 

nd as the correction function for SD is a Lagrange polynomial, we 

ay use this to give 

L 

∣∣ f δr−1 | R − f δr| L 
∣∣∥∥∥d g L 

d x 

∥∥∥
L 2 

� κL C( p + 2) 1 −mk ‖ f‖ H mk . (39) 

onsidering the first term on the right-hand-side of Eq. (36) , we 

an modify Thm. 3.2 to yield 

∂ f 

∂x 
− ∂ f δ

∂x 

∥∥∥
L 2 

� 

∥∥ f − f δ
∥∥

H 1 
� C( p + 2) 3 / 2 −mk ‖ f‖ H mk . 

ombining these results and taking into account that κ ∈ [0 , 1] , the 

pper bound is found to be 

∂ f 

∂x 
− ∂ f δC 

∂x 

∥∥∥
L 2 

� C( p + 2) 3 / 2 −mk ‖ f‖ H mk . (40) 

epeating these steps for FR, we find the similar and expected re- 

ation that 

∂ f 

∂x 
− ∂ f δC 

∂x 

∥∥∥
L 2 

� C( p + 1) 3 / 2 −mk ‖ f‖ H mk . (41) 

s a result, the error of SD can be lower due to the different scal-

ng, the difference being most evident when the ratio ( p + 2) / ( p +
) is largest and k is large compared to p (i.e. in under-resolved 

ases). We remark that this result is separate from arguments con- 

erning the study of the scheme’s asymptotic rate of convergence 

ith respect to grid spacing. In that case, it is known that DG-type 

R schemes can obtain super-convergence one degree higher than 

D and other FR variants [54,55] . 

. Governing equations 

Consider the full three-dimensional compressible Navier–Stokes 

quations written in strong conservation form for a Cartesian co- 

rdinate system ( x, y, z ) 

∂ U 

∂t 
+ 

∂ f 

∂x 
+ 

∂ g 

∂y 
+ 

∂ h 

∂z 
= 0 . (42) 

he vector of state variables, U (x, y, z, t) , is defined for [ x, y, z] ∈
⊂ R 

3 and t ∈ R 

+ , with U = [ ρ ρu ρv ρw ρE] T and the flux vec-

ors f , g and h contain both inviscid terms, denoted by (·) e , and 

iscous terms, denoted by (·) v , where 

f = f e − f v , g = g e − g v , h = h e − h v . (43) 

he inviscid flux vectors can be written as 

f e = 

⎡ 

⎢ ⎢ ⎣ 

ρu 

ρu 

2 + p 
ρu v 
ρuw 

(ρE + p) u 

⎤ 

⎥ ⎥ ⎦ 

, g e = 

⎡ 

⎢ ⎢ ⎣ 

ρv 
ρv u 

ρv 2 + p 
ρv w 

(ρE + p) v 

⎤ 

⎥ ⎥ ⎦ 

, h e = 

⎡ 

⎢ ⎢ ⎣ 

ρw 

ρwu 

ρw v 
ρw 

2 + p 
(ρE + p) w 

⎤ 

⎥ ⎥ ⎦ 

(44) 

nd the viscous flux vectors can be written as 

f v = 

⎡ 

⎢ ⎢ ⎣ 

0 

τxx 

τxy 

τxz 

κ ∂T + uτxx + v τxy + wτxz 

⎤ 

⎥ ⎥ ⎦ 

, 
∂x 
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5  
g v = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 

τyx 

τyy 

τyz 

κ ∂T 
∂y 

+ uτyx + v τyy + wτyz 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

 v = 

⎡ 

⎢ ⎢ ⎣ 

0 

τzx 

τzy 

τzz 

κ ∂T 
∂z 

+ uτzx + v τzy + wτzz 

⎤ 

⎥ ⎥ ⎦ 

. (45) 

he total energy is E = p/ [ ρ(γ − 1)] + (u 2 + v 2 + w 

2 ) / 2 and the

hermal conductivity is κ = (μc p ) /P r. Under Stokes’ hypothesis, 

he bulk viscosity is assigned a value of zero, leading to the sec- 

nd coefficient of viscosity taking the value λ = −2 / 3 μ; therefore, 

e can write 

xx = 2 μ
∂u 

∂x 
+ λ∇ · u , τyy = 2 μ

∂v 
∂y 

+ λ∇ · u , τzz = 2 μ
∂w 

∂z 
+ λ∇ · u , 

(46a) 

xy = τyx = μ

(
∂v 
∂x 

+ 

∂u 

∂y 

)
, τxz = τzx = μ

(
∂w 

∂x 
+ 

∂u 

∂z 

)
, 

yz = τzy = μ

(
∂w 

∂y 
+ 

∂v 
∂z 

)
. (46b) 

In the formulation above, u, v , and w are the components of 

elocity in the x, y, and z directions, respectively, and ρ represents 

he density, p the pressure, μ the dynamic viscosity, ν the kine- 

atic viscosity, P r the Prandtl number, γ the specific heat ratio, 

nd c p the specific heat at constant pressure. Unless stated other- 

ise, the Prandtl number and specific heat ratio are set constant 

t P r = 0 . 72 and γ = 1 . 4 for all simulations. 

. Numerical experiments 

The results from a series of numerical experiments performed 

omparing SD and FR SD will now be presented. 

.1. Heterogeneous linear advection equation 

We will begin with a 1D linear test case that can be modified 

uch at aliasing is introduced. Given a linear advection equation 

ith variable propagation speed, an equivalent scalar conservation 

orm can be derived 

∂u 

∂t 
+ (2 − sin x ) 

∂u 

∂x 
= 0 ⇔ 

∂u 

∂t 
+ 

∂(2 − cos x ) u 

∂x 
= u sin x. (47) 

n the latter form, the equation introduces aliasing errors in nu- 

erical calculations, and thus is a suitable candidate for identifying 

e-aliasing properties of numerical schemes without the presence 

f non-linearities. Furthermore, when this equation is applied to a 

eriodic domain � = [0 , 2 π ] , the solution is shown to analytically 

ave a time period of T = 4 π/ 
√ 

3 , allowing for exact calculations

f the error [56] . 

The initial condition for this test was chosen to be a reconstruc- 

ion of the energy spectra 

(k, t = 0) = 

Ck 4 

k 5 
0 

exp 

(
− k 2 

k 2 
0 

)
, where C = 

2 

3 
√ 

π
, and k 0 = 10 , 

(48) 

hich is similar to the condition used by Alhawwary et al. [57] and 

an [58] . A 1D scalar field was then reconstructed from the spectra 

s 

 (x, t = 0) = 

k max ∑ 

k =0 

√ 

2 E(k, 0) cos (kx + �(k )) , (49) 
7 
here k max = 2048 is some maximum wavenumber and �(k ) ∈ 

0 , 2 π ] is a random phase angle for wavenumber k . With this

nitial condition, multiple modes are excited while E(k ) → 0 as 

 → ∞ , which makes differences in aliasing evident. 

A comparison of the numerical results is shown in Fig. 2 for 

arious polynomial orders and grid resolutions after one time pe- 

iod. For this case, only the average spectra results of the exper- 

ments using centrally-differenced interfaces are shown as negli- 

ible differences between SD and FR SD were observed when up- 

inding was used. This effect can be attributed to the numerical 

issipation of upwinded schemes at high frequencies which can 

e sufficient to dampen aliasing errors in this case. When using 

entral-differencing on the coarse grid, instabilities were evident 

n the spectra of the calculations using the FR method, whereas 

he SD method was stable. As the grid was refined, the FR method 

ecame stable but had notably more energy at high wavenumbers 

han the SD method. As it can be shown analytically for this equa- 

ion that aliasing will be introduced at the highest wavenumbers 

nd propagated to the lower wavenumbers, it is evident that pure 

D is more stable due to less aliasing error. 

.2. Isentropic Euler vortex 

To demonstrate and compare super-convergence of the flux re- 

onstruction and spectral difference schemes [59,60] for the Euler 

quations within the current implementation, we solve the isen- 

ropic Euler vortex [61] in a free-stream flow for which there ex- 

sts an exact analytical solution. Super-convergence for these types 

f schemes is said to be achieved once the observed order of accu- 

acy is greater than p + 1 . The vortex is initially prescribed a size 

 c and strength ε, positioned in the domain at (x o , y o ) , and here 

e will consider a vortex advecting purely in the y -direction. The 

nalytical solution at (x, y, t) for this test case is given by 

(x, y, t) = ρ∞ 

(
1 − (γ − 1) ε2 M 

2 
∞ 

8 π2 
exp (2 f ) 

) 1 
γ −1 

, (50a) 

 (x, y, t) = U ∞ 

(
ε(y − y o − U ∞ 

t) 

2 π r c 
exp ( f ) 

)
, (50b) 

 (x, y, t) = U ∞ 

(
1 − ε(x − x o ) 

2 π r c 
exp ( f ) 

)
, (50c) 

p(x, y, t) = p ∞ 

(
ρ

ρ∞ 

)γ

. (50d) 

here f = (1 − (x − x o ) 2 − (y − y o − U ∞ 

t) 2 ) / 2 r 2 c . To match the con-

itions of Vincent et al. [54] and Witherden et al. [29] , we 

et the free-stream conditions to ρ∞ 

= 1 , U ∞ 

= 1 , and p ∞ 

=
ρ∞ 

U 

2 ∞ 

) / (γ M 

2 ∞ 

) , where the free-stream Mach number is M ∞ 

= 

 . 4 . We prescribe the size and strength of the vortex to be r c = 1 . 5

nd ε = 13 . 5 , respectively, and initially position the vortex at the 

enter of the domain located at (x o , y o ) = (20 , 20) . 

The computational domain � = { x, y ∈ R | 0 � x, y � 40 } is par-

itioned using four different meshes of 120 2 , 140 2 , 160 2 , and 180 2 

lements. The upper and lower boundaries are treated as periodic 

hile the left and right boundaries are prescribed free-stream con- 

itions. These conditions result in modeling an infinite array of 

oupled vortices; however, the impact of the vortex on the free- 

tream at the boundaries is negligible since the vortex size r c is 

mall compared to the length L = 40 of the domain and the vortex 

trength exponentially decays from its origin [54] . Therefore, we 

re effectively modeling a vortex propagating through an infinite 

omain. We consider a polynomial order p = 3 , which gives 480 2 , 

60 2 , 640 2 , and 720 2 DoF for the various meshes. We use Davis’
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Fig. 2. Energy spectrum comparison of FR SD and SD with centrally-differenced interfaces after one time period averaged over 1 ×10 3 initial conditions. 

Fig. 3. Isentropic Euler Vortex: (a) p = 3 solution of density ρ after 45 advective flow cycles ( t = 1800 s ) in the domain � = { x, y ∈ R | 0 � x, y � 40 } which is partitioned 

into 120 2 elements, (b) enlarged image of the vortex centered at the origin (x, y ) = (20 , 20) at t = 1800 s . 
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orm of the Rusanov approximate Riemann solver [62] to compute 

nviscid numerical fluxes at the interfaces between elements, and 

e use the low-storage, five-stage, fourth-order accurate Runge–

utta scheme of Carpenter and Kennedy [63] with a time step 

f �t = 1 . 25 × 10 −3 to explicitly march the solution through time. 

his time step is small enough such that all truncation errors are 

ominated by the spatial discretization. 

To assess the order of accuracy, we compute the L 2 -norm of the 

ensity error ‖ e ‖ 2 inside an integration window �I = { x, y ∈ R | −
 � x − x o � 2 , −2 � y − y o � 2 } at each moment in time the vor-

ex advects through the entire computational domain and returns 

o the origin, which occurs when t = t � L/u ∞ 

for t � ∈ { 1 , 2 , . . . , 45 } .
ig. 3 demonstrates the integrity and centering of the vortex about 

he origin after 45 advective flow cycles. The L 2 -norm of the den- 

ity error is defined as 

 e ‖ 2 = 

√ ∫ 
�I 

(ρn (x, y ) − ρe (x, y )) 2 d x (51) 
8 
here ρn (x, y ) is the numerical density and ρe (x, y ) is the ex-

ct analytical solution given in Eq. (50a) at t = 0 . To approximate 

he integrals in Eq. (51) , we apply a more than sufficient high- 

trength quadrature rule. To compare our results against those ob- 

ained by [54] and [29] , we plot the observed convergence of the 

R SD and SD schemes in Fig. 4 , where the order of accuracy at any 

iven time is determined by computing the slope of the line given 

y a least-squares fit of log (‖ e ‖ 2 ) as a function of log (h ) . For the

our different meshes, we use grid spacings h ∈ { 1 / 3 , 2 / 7 , 1 / 4 , 2 / 9 } .
or comparison, we also plot results from other FR schemes built 

nto the current solver in Fig. 4 including FR DG , FR 2 and DFR . We 

bserve an approximate 2 p + 1 level of accuracy under FR DG at 

 = 1800 s and 2 p under FR SD . We also confirm that the super accu- 

acy of the DFR scheme is equivalent to that of FR DG since solution 

oints are placed at corresponding Gauss–Legendre points. 

We can recast the nodal form of the solution polynomial 

nto its modal form by using a set of modal basis functions—

rthogonal Legendre polynomials L i (ξ ) , L j (η) —and their cor- 
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Fig. 4. Isentropic Euler Vortex: super accuracy with p = 3 for various discontinuous 

spectral element schemes—FR DG , FR SD , FR 2 , DFR and SD . 
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Table 1 

Inviscid, subsonic flow over 2D cylinder: numerically-generated entropy 

(Jkg −1 K −1 ) under FR SD and SD . 

p FR SD SD p +2 
p +1 

�s min �s max �s min �s max 

2 –1.95 ×10 −2 1.83 ×10 −2 –6.72 ×10 −3 4.93 ×10 −4 4 / 3 = 1 . 33 

4 –9.67 ×10 −5 9.68 ×10 −5 –9.69 ×10 −5 9.72 ×10 −5 6 / 5 = 1 . 20 

6 –9.79 ×10 −5 9.79 ×10 −5 –9.78 ×10 −5 9.69 ×10 −5 8 / 7 = 1 . 14 
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esponding modal coefficients c i, j [3] . Following the work of 

piegel et al. [64] , we plot | c i, j | within each element (see Fig. 5 ),

ormalizing by the mean mode and zeroing all modes less than 

 × 10 −7 . In these images, the values of | c i, j | in the lower left cor-

er of each element correspond to the magnitude of the mean 

ode c 0 , 0 L 0 (ξ ) L 0 (η) . The values in the upper right corner of 

ach element correspond to the magnitude of the highest Legendre 

ode c p , p L p (ξ ) L p (η) . From left to right and bottom to top, these

odal coefficients correspond to the magnitude of the Legendre 

odes of increasing order with respect to ξ and η, respectively, 

p to p . Under FR SD , we demonstrate in Fig. 5 that the higher fre-

uency modes in regions away from the vortex are more energized 

n comparison to SD . The larger magnitudes of the higher modes 

n FR SD can be attributed to aliasing errors. By comparison, the 

D scheme is successful at suppressing this energy at the higher 

odes, with the dominant modes away from the vortex being the 

owest order mean mode, which is consistent with analytic solu- 

ion. In turn this produces a lower error in the solution, as demon- 

trated by the time history plot of the L 2 -norm of density shown 

n Fig. 6 a. As a result, this causes rate of convergence history to 

nitially increase sharply to a level above 2 p between t = 0s and 

 = 480 s , then level off for the remaining portion of the simulation. 

his rapid approach to an order greater than 2 p indicates favorable 

ccuracy properties of the SD scheme, thereby reducing contami- 

ation of the solution from aliasing errors. This result is consis- 

ent with the analytical findings presented in Eqs. (40) and (41) . 

ltimately, this offers improved stability when performing implicit 

arge eddy simulations of turbulent flow problems such as those 

tudied in Section 5.4 and Sec 5.5 . 

.3. Inviscid, subsonic flow over a cylinder 

In this section, we simulate the steady, two-dimensional, invis- 

id, subsonic flow over a cylinder as governed by the compressible 

uler equations. This test case is constructed to assess numerically- 

enerated entropy and was used in Mengaldo et al. [65] to test 

he effectiveness of global de-aliasing for the FR DG scheme at dif- 

erent polynomial orders. Ideally, zero entropy should be gener- 

ted for an inviscid, subsonic simulation, however aliasing in the 

umerical method introduces a mechanism allowing the build-up 

f entropy. To reduce numerical entropy generation due to the 

esh representation of the cylinder wall, the curvature of the 

ylinder is represented with 176 quartic elements with 54 ele- 

ents in the radial direction. The mesh, shown in Fig. 7 a, ex- 
9 
ends 10 d into the farfield and contains a total of 176 × 54 = 

 504 elements. The simulation was run at a freestream Mach 

umber of M ∞ 

= 0 . 2 with p = 2 , p = 4 and p = 6 using the

ow-storage, four-stage, third-order embedded Runge–Kutta time 

ntegration scheme—abbreviated RK[4,3(2)]-2N—of Carpenter and 

ennedy [66,67] with adaptive time-stepping. 

Mach number contours from the p = 6 solution for FR SD and SD 

an be seen in Figs. 7 b and 7 c, respectively, appearing qualitatively 

dentical. Results of numerically-generated entropy (Jkg −1 K 

−1 ) for 

 ∈ { 2 , 4 , 6 } are shown in Fig. 8 and tabulated in Table 1 . Ref-

rence values of pressure, density and specific gas constant are 

01 325 N m 

−2 , 1.225 kg m 

−3 and 287.05 Jkg −1 K 

−1 , respectively. 

or p = 4 and p = 6 , similar results for both FR SD and SD were 

bserved, with entropy generation ranging between ±9 . 79 × 10 −5 

hroughout the entire domain, with the difference in results be- 

ween the two schemes being negligible at these polynomial or- 

ers. However, for the p = 2 case shown in Figs. 8 a and 8 d,

he results demonstrate entropy build-up near the two stagna- 

ion points located on the windward side and leeward side of 

he cylinder, with a larger quantity of entropy build-up down- 

tream. The minimum and maximum entropy values are approx- 

mately �s min = −1 . 95 × 10 −2 and �s max = 1 . 83 × 10 −2 for FR SD 

nd �s min = −6 . 72 × 10 −3 and �s max = 4 . 93 × 10 −4 for SD . These 

esults demonstrate reduced numerical entropy generation under 

D by a factor of approximately three, indicating more favorable 

esults for this particular under-resolved case at p = 2 where the 

atio of flux points to solution points ( p + 2) / ( p + 1) is greatest

or the SD scheme. 

.4. Taylor–Green vortex at Re = 1 600 

In this section, we simulate the Taylor–Green vortex (TGV)—a 

imple, canonical problem in fluid dynamics often used to study 

ortex dynamics and turbulent transition and decay [68] . The 

roblem consists of a cubic volume of fluid initially containing 

 smooth distribution of vorticity. As time evolves, the vortices 

oll-up, vortex lines stretch, and vorticity intensifies. The large- 

cale vortical structures break down and small-scale eddies are 

roduced, ultimately resulting in the transition to turbulence [69] . 

ventually, the small-scale turbulent motion dissipates all the en- 

rgy and the fluid comes to rest. This test case is consistently 

sed to evaluate turbulent flow simulation methodologies by the 

nternational Workshop on High-order Methods in Computational 

luid Dynamics held at the American Institute of Aeronautics 

nd Astronautics Aerospace Sciences Meeting [70] . Various authors 

ave demonstrated success in using high-order schemes to pre- 

ict this flow field, and the current work complements existing 

esults in the literature from discontinuous spectral element meth- 

ds [19,71–73] . Specifically, we use the TGV to compare the accu- 

acy and stability between the SD and FR SD schemes for under- 

esolved simulations of turbulent flow. 

The initial conditions of velocity and pressure for the TGV are 

iven by 

(x, y, z, 0) = 

p 

RT 
(52a) 
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Fig. 5. Isentropic Euler Vortex: modal coefficients for p = 3 on the subdomain { x, y | 20 < x < 30 , 20 < y < 30 } on a 120 × 120 grid after one advective flow cycle ( t = 40 s ). 

(a) FR SD , (b) SD . 

Fig. 6. Isentropic Euler Vortex: L 2 -norm of density error || e || 2 as a function of time for p = 3 (a) SD ( black ) and FR SD ( red ), (b) L 2 -norm of density error as a function of grid 

spacing h at t = 1800 s . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Inviscid, subsonic flow over 2D cylinder: mach number (a) mesh; (b) FR SD , p = 6 ; (c) SD , p = 6 . 

10 
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Fig. 8. Inviscid, subsonic flow over 2D cylinder: entropy (a) FR SD , p = 2 ; (b) FR SD , p = 4 ; (c) FR SD , p = 6 ; (d) SD , p = 2 ; (e) SD , p = 4 ; (f) SD , p = 6 . 
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 (x, y, z, 0) = u o sin 

(
x 

L 

)
cos 

(
y 

L 

)
cos 

(
z 

L 

)
(52b) 

 (x, y, z, 0) = −u o cos 

(
x 

L 

)
sin 

(
y 

L 

)
cos 

(
z 

L 

)
(52c) 

 (x, y, z, 0) = 0 (52d) 

p(x, y, z, 0) = ρo u 
2 
o 

(
1 

γ M 

2 
o 

+ 

1 

16 

[ 
cos 

(
2 x 

L 

)
+ cos 

(
2 y 

L 

)] [ 
cos 

(
2 z 

L 

)
+ 2 

] )
(52e) 

here the reference velocity, density, and Mach number are u o = 

 , ρo = 1 , and M o = 0 . 1 , respectively. The quantity L defines a

ength scale for the problem; Reynolds number is defined as Re = 

ρo u o L ) /μ, and is set at 1 600 . The fluid is modeled as a perfect

as with a specific heat ratio of γ = 1 . 4 and Prandtl number of

 r = 0 . 71 . From the ideal gas law RT o = p o /ρo , and if we initial-

ze the flow field with the assumption of isothermal flow, then 

p/ρ = p o /ρo . This relationship allows the initial density field to be 

et according to Eq. (52a) . The flow is computed inside a square 

omain � = { x, y, z | 0 � x, y, z � 2 πL } with periodic boundaries

sing a low-storage, five-stage, fourth-order accurate Runge–Kutta 

ime integration scheme with a constant time step. A character- 

stic convective time scale can be defined as t c = L/u o . The non-

imensional integrated kinetic energy is 

 = 

1 

ρo u 

2 
o V 

∫ 
�

1 

2 

ρ u · u d x (53) 

here V is the total volume of the domain and d x = d x d y d z. For

his test case we choose L = 1 such that the total volume is V =
11 
 π3 . The principal method of testing turbulent flow simulation 

ethodologies using the TGV test case is to compute and track the 

issipation rate of the kinetic energy through time. The dissipation 

ate based upon the kinetic energy is 

(K) = − d K 

d t � 
(54) 

here t � = tu o /L . The non-dimensional integrated enstrophy is 

= 

t 2 c 

ρo V 

∫ 
�

1 

2 

ρ ω · ω d x . (55) 

or strictly incompressible flow, the non-dimensional theoretical 

orticity-based dissipation rate is proportional to ζ by 

(ζ ) = 

2 μ

ρo u 

2 
o t c 

ζ . (56) 

n a compressible fluid, the non-dimensional theoretical dissipation 

ate is based upon the summation of the following three terms 

( S d ) = 

2 μt c 

ρo u 

2 
o V 

∫ 
�

S d : S d d x , (57a) 

(p) = − t c 

ρo u 

2 
o V 

∫ 
�

p ∇ · u d x , (57b) 

(μb ) = 

μb t c 

ρo u 

2 
o V 

∫ 
�
(∇ · u ) 2 d x (57c) 

here ε( S d ) and ε(p) are the dissipation terms based upon the 

eviatoric strain-rate tensor S d and pressure dilatation, respec- 

ively. Under Stokes’ hypothesis, the bulk viscosity μb is assigned a 

alue of zero, which leads to the second coefficient of viscosity tak- 

ng the value λ = −2 / 3 μ; therefore, the dissipation due to the bulk

iscosity is neglected. Furthermore, for low Mach number flows 
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Fig. 9. TGV: SD result of Q -criterion ( QL 2 /u 2 o = 1 . 5 ) colored by velocity magnitude at (a) t � = 5 , (b) t � = 11 and (c) t � = 20 on a 64 3 grid using p = 3 ( 256 3 DoF). 
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ith negligible compressibility effects, the theoretical dissipation 

ate reasonably approximates the integrated enstrophy and can be 

stimated by ε( S d ) . In these simulations, we compute the theo- 

etical dissipation rate as ε( S d ) + ε(p) . All integrals are approxi- 

ated with a sufficiently high-strength quadrature rule. The mea- 

ured dissipation rate ε(K) is computed during post-processing 

sing second-order finite differences to approximate the tempo- 

al derivative of the kinetic energy. A reference solution has been 

rovided by van Rees et al. [74] , which has to be scaled by a

actor of 1 / 2 V to match the presentation of the current results.

hese authors performed a direct numerical simulation (DNS) at 

e = 1 600 using a pseudo-spectral method on the incompressible 

avier–Stokes equations with a resolution of 512 3 . 

.4.1. Well-resolved 

First, we perform well-resolved simulations of the TGV using a 

4 3 grid and p = 3 , giving a total of 256 3 DoF, to show the ability

f both SD and FR SD to accurately capture the flow physics of the 

GV and its transition to and subsequent decaying of turbulence. 

ll simulations for this test case are run using Davis’ form of the 

usanov approximate Riemann solver such that a close compari- 

on can be made to the results from Vermeire et al. [75] who used

R DG with similar initial conditions. The time step size used in this 

imulation is a constant 4 ×10 −4 . Fig. 9 demonstrates the roll-up 

f the vortex sheets at t � = 5 , the transition to turbulence leading

o the production of small-scale vortical structures at t � = 11 , and 

he subsequent decaying of these structures depicted at t � = 20 . 

esults of ε(K) and ε( S d ) + ε(p) in Fig. 10 a and Fig. 10 b indicate

ittle discrepancy between the measured and theoretical dissipa- 

ion rates, with the peak dissipation rate occurring near t � = 9 . 

he actual difference between ε(K) and ε( S d ) + ε(p) is plotted in 

ig. 10 c and can be attributed to numerical dissipation and disper- 

ion, non-conservation in evaluating the derivative of the conser- 

ative variables since the scheme is only guaranteed to be C 0 con- 

inuous [19] , and numerical errors aliased from the higher modes 

o the lower ones. We can observe that the maximum difference 

nder SD is approximately 60% of that exhibited under FR SD . The 

ressure dilatation-based dissipation rate—which measures com- 

ressibility effects on the dissipation of turbulent energy—among 

he two schemes is essentially identical and shown in Fig. 10 d. 

aximum values of ε(p) are approximately 2 ×10 −4 . 

Following the procedure laid out in Brachet et al. [69] , we 

ompute the spherically-averaged energy spectra E(κ) at the peak 

issipation rate ( t � = 9 ). Results are plotted in Fig. 11 for both

chemes against the reference DNS result. Both SD and FR SD exhibit 

n accumulation of energy near the cutoff wavenumber κ = 128 

ue to the dissipation inherent to the Riemann solver [20] . Sharp 
12 
issipation is known to promote this pile-up of energy prior to 

he dissipation range and induce a more pronounced bottleneck ef- 

ect [76] . This build-up of energy at the smallest captured scales is 

elated to contamination of the true physics by numerical errors 

uch as dispersion. 

.4.2. Under-resolved 

We perform under-resolved simulations of the TGV using an 

 

3 grid while increasing p to see the effect of higher polynomial 

rders on stability for true spectral difference and the modified 

pectral difference recovered via the flux reconstruction formula- 

ion. We start the simulations at p = 3 and increment the poly- 

omial order by 1 until both schemes produce unstable solutions, 

hich occurs at p = 8 . Therefore, we are considering seven differ- 

nt levels of resolution: 24 3 , 32 3 , 40 3 , 48 3 , 56 3 , 64 3 and 72 3 DoF.

o reduce the amount of numerical dissipation, we run all simu- 

ations for this test case using Roe’s scheme [77] for the approxi- 

ate Riemann solver. Results of ε(K) and ε( S d ) + ε(p) are plotted 

n Fig. 12 . In Fig. 12 a, we observe a large amount of numerical dis-

ipation in the results computed using p = 3 , whereby the rate of 

inetic energy loss is overestimated at earlier times in the simula- 

ion, where the flow is restricted to a smaller range of scales. The 

imulation from FR SD is quickly rendered unstable at p = 4 , largely 

ue to aliasing errors produced at the higher wavenumbers when 

ubstantial roll-up of the vortex sheets occurs near t � = 5 —this 

lowup in the solution occurs at similar times for all higher val- 

es of p . The simulations from the SD scheme, on the other hand, 

emonstrate that as p is increased further, the solution is stable 

nd the difference between the measured dissipation rate due to 

inetic energy and the theoretical dissipation rate becomes smaller, 

nd the result from ε( S d ) + ε(p) approaches the DNS result up to 

 = 7 . However, the SD solution does become unstable at p = 8 

ear t � = 5 . Overall, these results indicate suppressed aliasing er- 

ors in and enhanced stability of the SD scheme on coarse grids 

ith higher polynomial orders when performing under-resolved 

urbulence simulations without any filtering, subgrid-scale model- 

ng, or de-aliasing. 

.5. SD7003 at Re = 60 0 0 0 , α = 8 ◦

We perform implicit large eddy simulations of the transitional 

ow of a Selig–Donovan (SD) 7003 airfoil [78,79] at Re = 60 0 0 0 ,

ach number M = 0 . 2 and angle-of-attack α = 8 ◦. This test case is

ommonly used to assess a numerical scheme’s ability to predict 

eparation and transition in a turbulent flow [16,17,80–82] , and we 

ompare results from the flux reconstruction and spectral differ- 

nce schemes without any filtering, subgrid-scale modeling, or de- 
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Fig. 10. TGV: (a) measured dissipation rate based on kinetic energy ε(K) , (b) theoretical dissipation based on strain-rate ε( S d ) and pressure dilatation ε(p) , (c) differ- 

ence between (a) and (b) ε(K) − ε( S d ) − ε(p) , (d) pressure dilatation ε(p) . Results are from a 64 3 grid using p = 3 ( 256 3 DoF). DNS results have been provided by van 

Rees et al. [74] . 

Fig. 11. TGV: energy spectra at t � = 9 on a 64 3 grid using p = 3 ( 256 3 DoF). The 

cutoff wavenumber ( −) and the -5/3 slope ( −−) are plotted in gray. DNS results 

have been provided by van Rees et al. [74] . 
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liasing. Laminar flow separation and reattachment occurs on the 

pper surface of the airfoil, forming a laminar separation bubble 

LSB) near the leading edge. Lift and drag on an airfoil can be sig- 

ificantly affected by an LSB, which can cause stability and con- 
13 
rol issues. The flow experiences transition near reattachment in 

he unsteady solution, which causes a region of turbulence over a 

arge portion of the airfoil’s upper surface and a turbulent wake 

ownstream of the airfoil. 

To perform these simulations, we use two meshes of differ- 

nt resolution as shown in Fig. 13 , the first (mesh A) of which

as provided by Vermeire et al. [75] . We use these two differ- 

nt meshes to study the ability of each scheme to simulate under- 

esolved transitional and turbulent flow at varying levels of p . 

esh A contains a total of 137 916 hexahedral elements with 12 

lements in the spanwise direction. The domain extends 10 c up- 

tream and 20 c downstream of the airfoil and extends in the span- 

ise direction by 0 . 2 c, where c is the chord length. This spanwise

ength is deemed sufficient for capturing spanwise structures [16] . 

e use this mesh to verify our implementation and directly com- 

are results to those from a well-established FR implementation in 

yFR [75] . For this mesh, we set p = 4 to make a direct comparison

o these results which gives approximately 1.723 ×10 7 DoF. We can 

ttribute any disagreement in results to be caused by different ap- 

roaches taken to compute interface viscous fluxes and implement 

irfoil wall boundary conditions. Vermeire et al. used the LDG ap- 

roach to compute viscous numerical fluxes while we used BR2 

both of our implementations employ Rusanov-type approaches to 

ompute inviscid numerical fluxes). Also, we note that the initial 

onditions of the flow field are different. The second mesh con- 

tructed (mesh B) is a coarser mesh that contains a total of 33 264 
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Fig. 12. TGV: measured dissipation rate based on kinetic energy ε(K) ( black ) and theoretical dissipation rate based on strain-rate and pressure dilatation ε( S d ) + ε(p) ( red ) 

on a 8 3 grid; (a) p = 3 , (b) p = 4 , (c) p = 5 , (d) p = 6 , (e) p = 7 , (f) p = 8 . DNS results have been provided by van Rees et al. [74] . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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lements with 8 elements in the spanwise direction, which pro- 

ides roughly the same number of degrees of freedom (1.703 ×10 7 ) 

sing p = 7 . The upper surface of the airfoil in mesh A and mesh B

s represented with 173 and 110 elements along the chord, respec- 

ively. This gives a total of 5.19 ×10 4 DoF on the upper surface in

esh A and 5.63 ×10 4 DoF in mesh B. To better capture the solid

oundary curvature, the airfoil surface is represented by quartic 
14 
lements. A no-slip adiabatic boundary condition is used for the 

irfoil surface, Riemann invariant boundary conditions are applied 

o the far field, and periodic conditions are applied in the span- 

ise direction. We use the low-storage, four-stage, third-order em- 

edded pair time integration scheme (RK[4,3(2)]-2N) with adap- 

ive time-stepping to integrate in time. We march forward in time 

or 30 t c , where t c = c/u ∞ 

is one convective time period. At 20 t c 
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Fig. 13. SD7003 at Re = 60 0 0 0 , α = 8 ◦: (a) near wall region of mesh A, provided by Vermeire et al. [75] (b) near wall region of mesh B. 

Fig. 14. SD7003 at Re = 60 0 0 0 , α = 8 ◦: isosurface of Q -criterion ( Qc 2 /u 2 ∞ = 500 ) colored by velocity magnitude obtained using the SD scheme at p = 7 . 

Fig. 15. SD7003 at Re = 60 000 , α = 8 ◦: (a) pressure coefficient C p , (b) upper surface skin friction coefficient C f . Results corresponding to p = 4 and p = 7 are obtained on 

mesh A and B, respectively. Results from Beck et al. [17] and Vermeire et al. [75] are provided for reference. 
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he flow is considered fully developed, and we collect time and 

panwise-average statistics between 20 t c and 30 t c . 

Fig. 14 displays an isosurface of the Q -criterion ( Qc 2 /u 2 ∞ 

= 500 )

olored by velocity magnitude from the SD scheme with p = 7 . 

ime and spanwise-averaged plots of the pressure and skin fric- 

ion coefficients are shown in Fig. 15 . We report maximum skin 

riction values in the turbulent region above the airfoil using SD 

f 8.3 ×10 −3 (mesh A, p = 4 ) and 8.5 ×10 −3 (mesh B, p = 7 ) and
15 
R DG of 7.3 ×10 −3 (mesh A, p = 4 ). This gives y + values of 8.95, 

2.54 and 8.40, respectively. However, the corresponding y + val- 

es of the first solution point nearest the airfoil surface, y + | sp , 

re 0.42, 0.25 and 0.39. Table 2 demonstrates that averaged val- 

es of the lift coefficient C L and drag coefficient C D as well as 

ime and spanwise-averaged values of flow separation x s /c and 

eattachment x r /c locations of the laminar separation bubble are 

n agreement with various discontinuous spectral element results 
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Table 2 

SD7003 at Re = 60 000 , α = 8 ◦: averaged lift coefficient C L , drag coefficient C D , separation location x s /c, and 

reattachment location x r /c. Unstable simulations are indicated by the symbol ✗ . Results from various authors 

are provided for reference. 

Author Scheme Mesh Elements p C L C D x s /c x r /c

Current SD A 137 916 4 0.938 0.049 0.032 0.317 

FR SD A 137 916 4 ✗ ✗ ✗ ✗ 

FR DG A 137 916 4 0.942 0.051 0.031 0.330 

SD B 33 264 7 0.940 0.048 0.028 0.301 

FR SD B 33 264 7 ✗ ✗ ✗ ✗ 

FR DG B 33 264 7 ✗ ✗ ✗ ✗ 

Vermeire et al. [75] FR DG A 137 916 4 0.941 0.049 0.045 0.315 

Romero [85] DFR - 202 500 4 0.950 0.045 0.035 - 

Beck et al. [17] DGSEM - 66 500 3 0.923 0.045 0.027 0.310 

Beck et al. [17] DGSEM - 8 900 7 0.932 0.050 0.030 0.336 

Garmann et al. [82] FD (6th order) - 12 549 120 - 0.969 0.039 0.023 0.259 

Table 3 

Wall-clock time to compute ∇ · F in mesh A us- 

ing 48 Intel Xeon E5-2680 v4 processors, nor- 

malized by total degrees of freedom, number of 

equations, and number of RK stages. All calcu- 

lations are done using double precision. 

Scheme t � 
wall 

(1 ×10 −9 s) 

SD 0.5920 

FR 0.5924 
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f implicit large eddy simulation found in the literature. The re- 

ults from Beck et al. [17] are generated using a discontinuous 

alerkin spectral element method (DGSEM) with polynomial de- 

liasing to prevent instabilities, without the use of other stabiliza- 

ion techniques such as filtering, subgrid-scale modeling, or arti- 

cial dissipation. The de-aliasing approach used in their work re- 

uces the approximation error associated with numerical integra- 

ion of the nonlinear fluxes, which allows for stable solutions on 

oarse grids at moderate Reynolds numbers. The results from Gar- 

ann et al. [82] , who used a 6th order finite difference scheme, 

re also provided in the table. We report here that under SD , the 

imulation is stable on both the coarse mesh ( p = 7 ) and fine mesh

 p = 4 ). Under FR DG , the simulation is rendered unstable only on 

he coarse mesh, and under FR SD , the simulation is unstable on 

oth meshes. These findings demonstrate the extra stability af- 

orded by the staggered arrangement of flux points inherent to 

he SD scheme for achieving a stable under-resolved implicit large 

ddy simulation of transitional flow using a higher polynomial or- 

er on a coarse grid. In regards to the results obtained with the 

R DG and FR SD schemes, the analysis in Section 3 does not specif- 

cally address the different stability properties among the various 

orrection functions within FR; however, it is thought that the en- 

anced accuracy and lower dispersion errors [83,84] afforded by 

R DG over FR SD suppress numerical instabilities. In light of the FR 

esults for this test case, we recommend the use of FR DG instead of 

R SD when filtering or de-aliasing is not applied for these under- 

esolved simulations of turbulent flows. 

.5.1. Computational cost 

Performance of the spectral difference and the flux reconstruc- 

ion schemes was measured using the simulations on mesh A in 

erms of wall-clock time taken to compute the divergence of the 

ux ∇ · F = ∂ x f + ∂ y g + ∂ z h , normalized by the total degrees of

reedom, number of equations to solve, and number of stages k 

n the time stepping scheme, such that t � 
wall 

= t wall /DoF /N eq /k . All

imulations have been done using double precision. The results 

hown in Table 3 demonstrate that, with the current high-order 

ramework of the solver, the performance of the spectral differ- 

nce and flux reconstruction schemes is approximately identical 
16 
n mesh A using p = 4 in computing transitional flow past the 

D7003 airfoil. In addition to previous computational performance 

ssessments [86] , these results offer a complimentary and more 

upportive view on the efficiency of the spectral difference scheme. 

. Conclusions 

We reported the development of various discontinuous spec- 

ral element methods within a single high-order coding frame- 

ork such that a fair and impartial comparison among several nu- 

erical schemes may be performed—most notably the true spec- 

ral difference and flux reconstruction methods. With this con- 

truct, we were able to assess the accuracy, stability, and perfor- 

ance of these two schemes. Furthermore, we provided a novel 

onlinear stability analysis of the spectral difference scheme and 

emonstrated that the error bound for this scheme can be smaller 

han the flux reconstruction scheme due to the staggered nature 

f the flux points. We performed a number of numerical experi- 

ents to support this analysis, such as heterogeneous linear advec- 

ion, isentropic Euler vortex, inviscid, subsonic flow over a cylin- 

er, Taylor–Green vortex at Re = 1 600 , and transitional flow past 

he SD7003 at Re = 60 0 0 0 . These results highlight the advantages

f using the baseline SD scheme on coarse grids with high poly- 

omial orders and demonstrate the potential for extra stability af- 

orded by the SD scheme across a range of polynomial orders—an 

mportant feature that makes the scheme more suitable for achiev- 

ng stable under-resolved implicit large eddy simulations than its 

R counterpart. The SD scheme coupled with an appropriate LES 

odel [87] can address the issue of reliably reproducing, under dif- 

erent polynomial orders, sub-grid scale interactions necessary for 

olving practical, high Reynolds number turbulent flows, especially 

hen considering p -adaptive techniques. In conclusion, based on 

oth numerical analysis and experiments, we find that the pure 

pectral difference method can be more robust for nonlinear prob- 

ems than its flux reconstruction analog, incurring less of a need 

or de-aliasing. 
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