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ABSTRACT

We report the development of a discontinuous spectral element flow solver that includes the implemen-
tation of both spectral difference and flux reconstruction formulations. With this high order framework,
we have constructed a foundation upon which to provide a fair and accurate assessment of these two
schemes in terms of accuracy, stability, and performance with special attention to the true spectral dif-
ference scheme and the modified spectral difference scheme recovered via the flux reconstruction for-
mulation. Building on previous analysis of the spectral difference and flux reconstruction schemes, we
provide a novel nonlinear stability analysis of the spectral difference scheme. Through various numerical
experiments, we demonstrate the additional stability afforded by the true, baseline spectral difference
scheme without explicit filtering or de-aliasing due to its inherent feature of staggered flux points. This
arrangement leads to favorable suppression of aliasing errors and improves stability needed for under-
resolved simulations of turbulent flows.
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1. Introduction

Computational fluid dynamics presents practitioners with many
challenges, chief among which is resolving the often wide range
of length scales while keeping computational cost sufficiently low.
This is crucial if such simulations are to meaningfully impact en-
gineering design cycles. Reynolds-Averaged Navier-Stokes (RANS)
methods, the prevailing mode of choice in the industry, have ex-
hibited significant shortcomings in simulating complex turbulent
flows, and as such, there is considerable interest in the devel-
opment of high-fidelity scale-resolving simulations. Although far
superior in terms of accuracy, these scale-resolving simulations
can be orders of magnitude more computationally expensive than
their RANS counterparts which makes them intractable for many
practical engineering purposes. To address this challenge, vari-
ous families of methods have emerged over several decades, one
of which is the spectral element method (SEM), a set of high-
order techniques that has been successfully used for many ap-
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plications. These methods developed out of discontinuous tech-
niques, such as that of Reed and Hill [1], which forwent some
solution continuity in favor of localizing the calculation to sub-
domains. This sub-domain structure—with reduced inter-element
communication—can increase the computational efficiency through
structured compute regions that are well suited to modern mas-
sively parallel computer architectures such as graphic processing
units (GPU).

Discontinuous SEM offers geometric flexibility and reduced dis-
sipation/dispersion errors for high-fidelity computations; however,
application of these schemes to turbulent flow problems can be
problematic due to numerical instability issues. As the cost of re-
solving the finest physical length scales grows prohibitively large
with increasing Reynolds number, scale-resolving simulations are
typically restricted to resolving only the statistically significant
length scales. For a sufficiently high-order scheme, this lack of res-
olution can cause aliasing errors to occur and produce unstable
simulations [2]. These errors originate from the high-order of the
flux function and/or the geometry and limit the space in which
the approximate solution can reside [3]. To ameliorate these er-
rors and achieve stability, various techniques have been introduced,
such as spectral vanishing viscosity methods (SVV) [4-7], modal
filtering [8-11], and split skew-symmetric methods [12-15]. How-
ever, these techniques do come with a notable computational cost
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and, in some cases, tunable parameters, and it has become com-
monplace to perform simulations without explicit filtering or de-
aliasing applied to the solution. One such approach in the con-
text of solving turbulent flows with discontinuous SEM is implicit
large eddy simulation (ILES) [16-20], from which high-fidelity so-
lutions can be obtained without any added modeling or filtering
traditionally used to account for sub-grid length scales by utilizing
the inherent numerical dissipation of the scheme. However, this
dissipation may be insufficient when using high-order discretiza-
tions for high Reynolds number turbulent flows, and it is not yet
evident which method is best suited for robustly achieving stable
and accurate simulations for these flows. There is speculation that
certain methods may have more favorable de-aliasing properties
which can result in improvements in stability, although it has not
been thoroughly explored.

In this paper, we investigate two nodal discontinuous spec-
tral element methods with several similarities. The first method
is the flux reconstruction (FR) method of Huynh [21] and Vin-
cent et al. [22]. This method uses a local polynomial approxima-
tion of the solution to form an approximation to the flux such
that continuity is enforced through inter-element communication
and correction functions. This method has been adapted for sev-
eral element topologies [23] and has been applied to various
equation sets including the Euler equations [24,25], Navier-Stokes
equations [24,26], and their incompressible counterparts [27,28].
Several implementations of FR are available that have demon-
strated the possibility to achieve high computational efficiency
and scalability on large problems [29,30]. The second method is
the spectral difference (SD) method originally put forth by Ko-
priva et al. [31,32], where a staggered arrangement of points is
used within each element, with one set of points for the solu-
tion and another for the flux and its gradient. The formal stability
of this method for linear problems was explored by Jameson [33],
who found a Lobatto-type distribution for the flux points to be im-
portant. Furthermore, Huynh [21] found that the accuracy of the
scheme is independent of the solution point locations for linear
problems. Similar to FR, this method has been successfully applied
to non-linear equations [34-36] as well as in the simulation of
complex physics [37-40].

The SD method is of interest as the approximation of the flux
function, which is projected into the solution space through dif-
ferentiation, is one degree higher than the solution. It is conjec-
tured that this increased order of the flux equips SD with a favor-
able amount of de-aliasing in comparison to FR. In the body of SD
and FR literature, there has been little comparative study between
these related methods and the effect that different techniques for
the flux function approximation will have on the stability and ac-
curacy of the methods. We investigate the differences and similar-
ities for these schemes when used in ILES, and show the effects of
the higher degree of the flux approximation on the stability of the
method. To this end, this work is structured with the formulation
of SD and FR schemes on hyper-cube elements in Section 2. Non-
linear analysis of the SD method is presented in Section 3, where
the instability mechanics are considered as well as scaling argu-
ments for the error. Section 4 sets forth the formulation used for
the Navier-Stokes equations and Section 5 details results from nu-
merical experiments for a series of test cases. Finally, conclusions
are drawn in Section 6.

2. Discontinuous spectral element formulations on hexahedral
elements

For the sake of completeness, we briefly describe in the follow-
ing sections the SD and FR schemes on tensor product hexahedral
elements such that a self-contained comparison of the different
formulations can be made.
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2.1. Element mapping

We will begin by prescribing the shared definitions for par-
titioning the domain, reference domain, and how transformation
from the reference domain and physical domain are constructed.
The arbitrary connected solution domain Q c R3 is partitioned
into N. non-overlapping, conforming, hexahedral elements, each
denoted by €2, such that

Ne
Q= U Qe,

e=1
Each three-dimensional physical element €2, is mapped to a ref-

erence element Q, ={&,n,8| —1<&,n, B <1} through a map-
ping of the form

Ne
NS =0 (1)
e=1

K
x(E. . B) =) xp(&. 1, B), (2)
k=1
where K is the number of nodes per element Q¢, X, = (X, Y. Z¢)
are nodal Cartesian coordinates, and ¢, (£,7n, ) are the nodal
shape functions. After transformation into the computational do-
main, the governing equations in Eq. (42) can be re-written in the
form

a0 9f 0z oh
ot 9g Tan T op
where the relationship between physical and reference quantities
for a stationary mesh is given by

-0 3)

X f f
U=, gl=UU'lg| (4)
h h

For stationary grids, the Jacobian is defined as J=
d(x,¥,2)/0(&,n,8), and the metric terms are computed us-
ing the conservative curl form of Kopriva [41], which is identical
to the form introduced by Thomas and Lombard [42]. This infor-
mation is needed at both the solution and flux points within each
reference element in accordance with the spectral difference and
flux reconstruction methodologies described in Sections 2.2 and
2.3.

2.2. Spectral difference

Following the original work of Kopriva and Kolias [31,32] and
Lui et al. [43], we briefly describe here the three-dimensional spec-
tral difference formulation for which the distribution of solution
points in a reference cube can be interpreted from the distribution
of points in the reference square shown in Fig. 1a. In this two-
dimensional representation, the number of solution points (blue
circles) along each direction is four—these points, representing a
polynomial of order » = 3, are located at Gauss-Legendre quadra-
ture points. The number of flux points (black squares) along each
direction is one higher than the number of solution points—these
points are also located at Gauss-Legendre quadrature points in the
interior plus the two end points at -1 and 1. Using the »+ 1 so-
lution points and the » + 2 flux points, two sets of Lagrange inter-
polating polynomials—of degree » and 2 + 1—along the & direction
can be built using

n+1
(E-& .
4(€) = v 1,...,2+1}, 5
g(a_&) ie{l...p+1) (5a)
S#I
7+1 E _ ;;:H%

ﬁHgS:IT(S ) Vielo,...,n+1}, (5b)

s=0 \Siti T §s+%
S#I
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(b)

Fig. 1. Distribution of solution points (SP ) and flux points (FP M) with » =3 for (a) spectral difference method and (b) flux reconstruction method inside a reference

element 2.

with analogous definitions made for the n and § directions. Here
it can be observed that #;(&;) = §;;, and the complete polynomial
approximation can be obtained within 2, through tensor products
of the three » degree one-dimensional Lagrange polynomials by

72+1 p+1 ﬁ+l ]

vEnpH=Y3 > U””" 4(E) £(n) £(B) (6)

k=1 j=1 i=1 Jrliik

where U,‘,Jk T(S,», nj. Br) are the nodal coefficients of the so-
lution in 2, that represent the value of the approximate solution

NPV . .
polynomial U, evaluated at the set of solution points. The values
of the flux vectors can be obtained in a similar manner, but in-
stead by using the three »+ 1 degree one-dimensional polynomi-

als ﬁwl’ ﬁj+l and fzk+l by

72+1 p+1 41

fr(‘i: m, ,3) = ZZZ""’"‘*’Z JJk ﬁ1+2(§) 'fp (77) fk(,B)

k=1 j=1 i=0

(7a)

72+1 p+1 p+1

BENB =YD D By GE) Ay s () 4B,

k=1 j=0 i=1

(7b)

7241 241 o1

h (5 n, ﬂ)_ZZZhT“]kJrZ f(é:) f(ﬂ) ﬁ’k+1(ﬁ)

k=0 j=1 i=1

(7¢)

. -8 -8
The nodal coefficients, fyji11,2 jk = fr (ir1/2. 0. Bi). of the ap-

proximate discontinuous fluxes, fr, are computed from the solu-
tion at the flux points U1/, ji obtained by Eq. (6). Similar ex-

pressions can be defined for g‘ and ﬁ‘s. The gradients at the so-
lution points are computed using the solution at the flux points
with the derivative of the Lagrange polynomial approach (see
Sun et al. [35]). The gradients can then be interpolated from the
solution points to the flux points using a similar Lagrange interpo-

lation approach given in Eq. (6) to obtain the terms @flf“ 1172, ]k

@flf“ j+1/2.k and VUT‘, jk+1,2- These gradients are needed only for

evaluation of the viscous fluxes.

The common inviscid flux fe’(Uf, UJ) at an interface between
elements in the reference space can be computed using any suit-
able approximate or exact Riemann solver, where the subscripts L
and R denote left and right states of an interface. Similar expres-

. N ~41 . .
sions can be defined for gﬁ' and h, . In the SD implementation, the

common viscous fluxes such as fiI(UB,VU‘S,U,‘%,VU,‘}) are com-
puted using an approach analogous to inviscid Riemann solvers. In
this work, we use the simple averaging approach from Bassi and
Rebay (BR1) [44]. Note that the fluxes in Egs. (7a)-(7c) are con-
tinuous within each element, but discontinuous across element in-
terfaces. Globally continuous fluxes can be achieved in SD by re-
placing the interpolated values of the fluxes at element interfaces
(denoted by a 1/2 or 2+ 3/2 index) with the common fluxes such
that derivatives of the continuous fluxes can then be written as

af‘fc Gl day ) e 4,50
=20 |Frvi—gg— t it — g —
k=1 j=1

dz;, 1 ()
+Z r|1+ gk dé j|fj(77) % (B), (8a)
aASC 241 1 dﬂ1 ()7) R dfim_;(n)
I L
k=1 i=1 n
;+—(’7)
+Z£mw k n} 4(§) 4 (B), (8b)
aﬁ‘” A 1<ﬁ) s i (B)
ZZ gy = ag e+~ ag dﬂ
j=1 i=1
. sy, 1 (B)
+Zhr\i.j,k+% kd;gﬂ] ¢(&) ¢;(m). (8¢c)
k=1

2.3. Flux reconstruction

Following the original work by Huynh [21,45], we briefly de-
scribe here the three-dimensional flux reconstruction formulation
for which the distribution of solution points in a reference cube
can be interpreted from the distribution of points in the reference
square shown in Fig. 1b. In this 2D representation, the number of
solution points (blue circles) along each direction is four—these
points, representing a polynomial of order =3, are located at
Gauss-Legendre quadrature points. The flux points (black squares)
along each direction are located at the two end points at -1 and
1. Using the solution at the »+ 1 solution points, a » degree La-
grange interpolating polynomial along each &, n, and 8 direction
can be constructed using Eq. (5a). Tensor products may once again
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be applied on the one dimensional Lagrange polynomial to obtain
a complete approximation of the solution and the fluxes by

ﬂ+]ﬂ+1ﬂ+] ]

w@nm—zzzj”wf@nmmaw> (9a)

kl]lllU”]

72+1 p+1 41

B, ﬁ)—ZZZfr\ukf(é)f(n) %(B). (9b)

k=1 j=1 i=1

72+1 p+1 o1

(%' n, ﬁ)_zzz |1]k"ﬂ(5) ¢i(n) 4 (B), (9¢c)

k=1 j=1 i=1

72+1 p+1 p+1

h &.n, ﬂ)_zzzhr\uk’/ﬂ(é)f(n) 4 (B). (9d)
k=1 j=1 i=1
3 =3
In FR, as in SD, the nodal coefficients, f; jx = f; (§i. 1}, Bx), of
3 N
the approximate discontinuous fluxes f, are computed from Uf“. ik
and @flf‘i. k- Where the latter term is only required for the viscous

fluxes. Similar expressions can be defined for g?f and ﬁa. In accor-
dance with the methodology of the flux reconstruction scheme, the
continuous flux functions defined along &, 1 and B directions can
be written as

~ o B) e (®).
(10a)

BB+ -F e plas® + [,

=2+, -2¢ 1.8 +[EL, -BE. 1.8 ().

(10b)

~48C a4

hr :hr+[hr77 h (%‘ n, _1)]gLB(ﬂ)+[ r+2 h (%‘ n, 1)]gRB(,3)

(10c)

where g;p and ggp represent left boundary (LB) and right bound-
ary (RB) correction functions in the reference element, respectively.
A stable correction function as defined by Huynh [21] and Vin-
cent et al. [22] can be generalized for the left boundary as

28(§) =aRr p11(6) + (1 — )RR ,(§) (11)

where % (y(§) represents the right Radau polynomial [46]. The
expression for a correction to the right boundary is obtained sim-
ply by reflection of g;p(&§) such that grg(§) =gg(—£) on the
interval Q, ={£ | —1<& <1}. Choosing @ =1 for the correc-
tion function in Eq. (11) recovers the collocation based nodal DG
method. Alternatively, choosing o = (z+1)/(22+ 1) recovers a
modified SD method—in the current work, it is this scheme to
which we directly compare true SD. Another type of scheme can
be obtained by setting & = /(22 + 1), which leads to the lumped
Lobatto g, scheme identified by Huynh [21] that collocates so-
lution points with the Lobatto points. These three schemes are
referred to herein as FRpg, FRsp, and FR,, respectively. Lastly,
Romero et al. [47] provided a simplified formulation of the FR
scheme that substitutes a Lagrange interpolation operation for the
correction functions. They offered a proof of equivalence of their
scheme to FRpg, provided that solution points are placed at the
corresponding Gauss-Legendre points. This method is referred to
as direct FR (DFR) [47,48].
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From Egs. (10a)-(10c), we can obtain the derivatives of the con-
tinuous flux functions

8}'86 21 241 pt1
2~ EEEMM%@Mmmm
[ . f( 1.7.8)] dgw(é) (12a)
[ 8'1 ngB( )
T+ s
a‘C 241 241 41
3g’67 kzl ]X; ,21 g”uk ¢i(§) d[j(n) &% (B)
+E, -2E. 1. ﬂ)]dgw(n) (12b)
[gf’ﬂ _PEN, ﬁ)]dgmz(ﬂ)
~56C
aah/; Z i Z] r\ljk fl(é) f](n) dfk(ﬁ)
o lf h 12
@zhﬁwew%@ (12

[y — By 6. 1)] e

In the FR implementation, the common viscous fluxes are
computed using a BR2-type, second procedure of Bassi and Re-
bay [49] to achieve compactness of the stencil in multiple dimen-
sions. The difference in computing the common, interface viscous
fluxes under SD and FR stems from the fact that within FR the
corrections functions can be used to correct not only the discon-
tinuous flux, but also the discontinuous solution using the jump
in solution at the interface in order to form a piecewise polyno-
mial function that is continuous at element interfaces. Applying
the reconstruction methodology to the solution in this way con-
nects it to the BR2 concept, and we can compute the derivative
of the ‘corrected’ function and average left and right ‘corrected’
states of an interface to obtain the derivative of the common solu-
tion needed to compute the viscous numerical flux. Although it is
thought that a BR2 type of scheme contributes to stability, we nev-
ertheless demonstrate in Section 5.5 that true SD can be more sta-
ble than FR for implicit large eddy simulations of transitional flow.
We refer the reader to Huynh [45] for further details on computing
common gradients within FR.

Once the divergence of the continuous flux is obtained by
Eqgs. (8a)-(8c) for the spectral difference scheme or Eqs. (12a)-(12c)
for the flux reconstruction scheme, an appropriate time stepping
technique can be applied to march the solution forward in time.
The implementation of both schemes is done within a single cod-
ing framework such that fair and proper comparisons of the two
methodologies can be made in terms of stability, accuracy, and per-
formance.

3. Nonlinear stability of spectral difference

In the work of Jameson et al. [50], the non-linear stability of
the flux reconstruction method was investigated, and it was found
that the solution decay could be decomposed into a stable compo-
nent and a non-linear component which can cause instabilities. As
this analysis was useful in understanding the mechanism by which
non-linearities affect stability and how de-aliasing methods can
mitigate this, we will perform a similar analysis for the spectral
difference method in order to highlight the differences that arise
between these two techniques.

Consider a scalar conservation law in one dimension
du af

W—i_a 0, (13)
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where the lower-case terms denote a scalar quantity. This may be

cast in the reference domain as

8175 d f‘S
T g

As was introduced in the previous section, the approximate flux f3
in the FR and SD methodologies is replaced by a corrected flux fac
that enforces C° continuity in the flux between elements. A similar
expression for the corrected flux used in the flux reconstruction
method can be written for the spectral difference method as

Pe=pa (R=5)ay+ (B = 1),

For brevity, we temporarily drop the subscript r and refer to left
and right interfaces of a given element with the subscripts L and

R. Therefore,
%f:—%—? - (7 fl)dg - (B fR) d”gz. (15)

To analyze stability in a norm that induces a Sobolev space, namely

1
191, = [ ¥

we investigate the behavior of

d s d 1,
— v =a /.Y
dt ” ”WZ./'J-C dt /—1

By taking Eq. (15) and, following the work of Jame-
son et al. [50], multiplying it by #% and integrating, we obtain

) e

Upon using the product rule, this may be rewritten as
%Q/ (ﬁ&)zds f fa a4
(=) LAy Gde (19)

(BB Ay s+ (e - fay).
Furthermore, taking Eq. (15) and differentiating it » times gives
9 /o7id apﬂfa d””ﬁh
ﬁ(agﬂ) z_agﬂﬂ - ( fL) d§p+‘l

=% .
( fR) w (20)

A key difference between this derivation and that for the flux re-
construction method is that f5 is a polynomial of degree »+1,

and therefore the first term on the right-hand side is not zero, but
a constant. If Eq. (19) is then multiplied by the »™ derivative of i®
and integrated, the following is obtained

1d 37’ 26 — 1o g £
2dt /_1< %‘ﬂ) 1 0571 96~

~ n+1
_ <‘81_fa) 1 grps d ﬁ%d
o) )L 9Es dEA

PO 1 grp8 d*t1% 5
_ Sl £6 At3 d 21

< R fR) » Béﬂ dé-ﬂ_H E’ ( )
which, in turn, may be written as

1 d 710 58741 f2orad
i, G e =25

=0. (14)

n %(8”17)2d$, (16)

n %(aﬂﬁ)ng. (17)
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~2(f ft)%g%—z( —f)%zuj% (22)

By combining Eqs. (19) and (22) and taking the norm as given by
Eq. (16), we then obtain

Yanay, =N fPatde ( f‘3>/ £y g
(= RR) 1y e~k
(i) ek () we
fors — f;gfag).

(23)

To proceed further, we refer to the work of
Huynh et al. [21] who showed that for the linear case, SD
could be recovered from FR for a given correction function. This
correction function, which we denote as g, recovered SD when the
SD flux points were formed from the » degree Gauss-Legendre
quadrature points with points added at —1 and 1. This is the
logical choice as Jameson et al. [33] showed that these points
resulted in the only SD scheme with provable linear stability. The
connection between the SD and FR formulations is given by

fz% =g and /iﬁ% = gr. (24)
Therefore, we may write Eq. (23) as
SENPR, = P + (- F) 0 mdras
+(R- f;?) I gndi e

. (25)
7+l £8 gp 2 278 dretl
- R EE — o(fr- ) s
I I an 7+1 28T A 2SI A
(R R) R e G- R,
and from Vincent et al. [22], we use
1 aaa apus d”“gL
—d =0 26
/;]gL aé g 857] d$ﬂ+1 B ( a)
L7 0708 drtlgy
2 dE — =0, 26b
| gt ~ < G (26D)
which reduces Eq. (25) to
aa’ " " 31 3 grqd
S, = [ O e (a - ) - ST TE @)

If the broken norm is then constructed from this for N elements
on a periodic domain, we obtain

N-1 N-1
aﬂ+1f5 apus
2dt”u ”Wzﬂc_®+12(;€l_CZ(;W e (28)
where
ou’
- d_
q= [ 07D (29)

Here, the term © is the interface contribution to the stability for
which a full derivation can be found in [50], and the reader is re-
ferred to that work for a more complete derivation. If the common
interface values are set such that they form an E-flux [51,52], then
® < 0 and therefore the stability is controlled by the latter two
terms. In contrast, the last term is not present in FR, the sign of
this contribution is unknown and may have either a stabilizing or
destabilizing effect for SD. However what may be concluded is that
the difference in stability is solely driven by the contribution of the
highest order mode of the flux and solution.
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To illustrate more clearly the effect that the difference between
the schemes has on the approximation of the flux gradient, we will
now examine the error scaling. Using theorems and corollaries pre-
sented by Bernardi and Maday [53], we further analyze the behav-
ior of the error in the flux evaluated in the 2 norm

‘ fzSC

Throughout, we adopt a similar notation to Bernardi and Ma-
day [53], where we define the Sobolev space

H"(X):{VGLZ(X) | VmeN, m<k, B”WGLZ(X)}

where X is an open, bounded, Lipschitz-continuous set of R, and
the norm induced on the space H* is

k
[ (mu)ax (30)

m=0

llull e =

To analyze the behavior of the flux error, we establish two neces-
sary theorems.

Theorem 3.1. (See Bernardi and Maday [53], Thm. 13.2.) For some
function u € H* with k > 1/2 and the Lagrange interpolation operator
,g € P, such that 1,g(¢;) = g(&;) for some set of points {&i}ic s
the following estimate holds

<CK) (2 + 1) [lull g, (31)

for some constant C that is only dependent on k.

llu = Lull2

Theorem 3.2. (See Bernardi and Maday [53], Thm. 13.4.) For some
function u € H* with real numbers k and r such that k > 1 and r < k
and the Lagrange interpolation operator 1,g defined in Thm. 3.1, the
following estimates hold

Clat D2 |y ifr<1

L {C(ﬂ + D2 H i > 1. >

With these theorems established, we look to determine the

bound on
af ﬁ H dg dg

|5 - 5 =15 - [ - -+ - @],
(33)

From the triangle inequality, this may be rewritten as

3 fc af dg dg

|5 - T < I3 - el + b - 2|+ -1 G,
(34)

We impose that the left interface values take the form

fl=aff g+ (1 —k)f. for & e[0.1], (35)

where r denotes the element index and «; controls the degree of

interface upwinding. We impose similar behavior at the right in-

terface with «z. We may then write

‘ 8f8C f?f*S dg,
dx 12

s s
) +KL’fr—l|R7 rlL
12

12
dgk
dx
As the true interface term is the same for both sides of the inter-
face, we may write

KL(fi]\R - f;su_) = KL(f;i”R - fr—]lR + frlL - ffu_)s (37)

which can be generalized for the other interface. Under the as-
sumption that f is a high-order function of u such that if u e H¥

o
+ir| R = fra

. (36)
L2
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then f € H™ for m > 1, the interface correction will scale with the
interpolation error of f

K| Fyg = Fiu] < ki€l +2) 7™ | fl . (38)

It is then straightforward to prove the following bound for a La-
grange polynomial

|

dx

and as the correction function for SD is a Lagrange polynomial, we
may use this to give

d
KL|f;§_1|R f gL

<C(z+2),

<KiC(z+2) ™ fll e (39)

Considering the ﬁrst term on the right-hand-side of Eq. (36), we
can modify Thm. 3.2 to yield

|5

Combining these results and taking into account that « < [0, 1], the
upper bound is found to be

-2

I T e e e T T

<C(z2+ 227 £l e (40)
12

Repeating these steps for FR, we find the similar and expected re-
lation that

” B fSC

<Cla+ D27 fll . (41)
2

As a result, the error of SD can be lower due to the different scal-
ing, the difference being most evident when the ratio (2 +2)/(z+
1) is largest and k is large compared to » (i.e. in under-resolved
cases). We remark that this result is separate from arguments con-
cerning the study of the scheme’s asymptotic rate of convergence
with respect to grid spacing. In that case, it is known that DG-type
FR schemes can obtain super-convergence one degree higher than
SD and other FR variants [54,55].

4. Governing equations

Consider the full three-dimensional compressible Navier-Stokes
equations written in strong conservation form for a Cartesian co-
ordinate system (x, y, z)

U of odg Oh

—+ =+ +-=0. 42
ot Tax Tay T oz (42)
The vector of state variables, U(x,y, z, t), is defined for [x,y,z]
QcR3andt e R, withU =[p pu pv pw pE]" and the flux vec-
tors f, g and h contain both inviscid terms, denoted by (-)e, and
viscous terms, denoted by (-),, where

f:fe_fvs g£§=8 -8 h:he_hv~ (43)
The inviscid flux vectors can be written as
pu pv pow
pu+p ovu pWU
fe= puv |, g=| pv*+p |, he= pwu
ouw oUW ow? 4+ p
(PE+pu (PE +p)v (PE + p)w.
(44)
and the viscous flux vectors can be written as
0
Txx
fv = Txy >
Txz

K I+ UTiy + VT + W
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0

Tyx

8 = Tyy ,
Ty,

| 3L+ Uty + VT + Wy,

B 0
Tzx

h, = Ty . (45)
Tz

L8+ uTy + VT + W

The total energy is E = p/[p(y — 1)] + (u% + > + w?)/2 and the
thermal conductivity is « = (ucp)/Pr. Under Stokes’ hypothesis,
the bulk viscosity is assigned a value of zero, leading to the sec-
ond coefficient of viscosity taking the value A = —2/3u; therefore,
we can write

rxx=zu%+)»V-u,

v ow
I Ty =20, +AV U T =2um +AV -0

0z
(46a)

v du ow du
Ty = Tyx = W a"'@ > Tz =Tox=HU ﬁ‘f’g s

ow v
Tyz =Ty =M aiy"‘ﬁ .

In the formulation above, u, v, and w are the components of
velocity in the x, y, and z directions, respectively, and p represents
the density, p the pressure, © the dynamic viscosity, v the kine-
matic viscosity, Pr the Prandtl number, y the specific heat ratio,
and ¢, the specific heat at constant pressure. Unless stated other-
wise, the Prandtl number and specific heat ratio are set constant
at Pr=0.72 and y = 1.4 for all simulations.

(46b)

5. Numerical experiments

The results from a series of numerical experiments performed
comparing SD and FRgp will now be presented.

5.1. Heterogeneous linear advection equation

We will begin with a 1D linear test case that can be modified
such at aliasing is introduced. Given a linear advection equation
with variable propagation speed, an equivalent scalar conservation
form can be derived
% +@- sinx)% —0 © % 4 0@ cosmu Cosu
In the latter form, the equation introduces aliasing errors in nu-
merical calculations, and thus is a suitable candidate for identifying
de-aliasing properties of numerical schemes without the presence
of non-linearities. Furthermore, when this equation is applied to a
periodic domain 2 = [0, 27r], the solution is shown to analytically
have a time period of T = 47 /+/3, allowing for exact calculations
of the error [56].

The initial condition for this test was chosen to be a reconstruc-
tion of the energy spectra

=usinx. (47)

Ck* k? 2
E(k,t=0) = (77), here C—= —“_. and ko= 10,
(k ) i3 exp kg where 3% and ko

(48)
which is similar to the condition used by Alhawwary et al. [57] and

San [58]. A 1D scalar field was then reconstructed from the spectra
as

Kmax

u(x,t =0) =chos (kx + W (k)), (49)
k=0
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where kmax = 2048 is some maximum wavenumber and W (k)
(0,27m] is a random phase angle for wavenumber k. With this
initial condition, multiple modes are excited while E(k) — 0 as
k — oo, which makes differences in aliasing evident.

A comparison of the numerical results is shown in Fig. 2 for
various polynomial orders and grid resolutions after one time pe-
riod. For this case, only the average spectra results of the exper-
iments using centrally-differenced interfaces are shown as negli-
gible differences between SD and FRgp were observed when up-
winding was used. This effect can be attributed to the numerical
dissipation of upwinded schemes at high frequencies which can
be sufficient to dampen aliasing errors in this case. When using
central-differencing on the coarse grid, instabilities were evident
in the spectra of the calculations using the FR method, whereas
the SD method was stable. As the grid was refined, the FR method
became stable but had notably more energy at high wavenumbers
than the SD method. As it can be shown analytically for this equa-
tion that aliasing will be introduced at the highest wavenumbers
and propagated to the lower wavenumbers, it is evident that pure
SD is more stable due to less aliasing error.

5.2. Isentropic Euler vortex

To demonstrate and compare super-convergence of the flux re-
construction and spectral difference schemes [59,60]| for the Euler
equations within the current implementation, we solve the isen-
tropic Euler vortex [61] in a free-stream flow for which there ex-
ists an exact analytical solution. Super-convergence for these types
of schemes is said to be achieved once the observed order of accu-
racy is greater than »+ 1. The vortex is initially prescribed a size
rc and strength €, positioned in the domain at (x,,y,), and here
we will consider a vortex advecting purely in the y-direction. The
analytical solution at (x,y, t) for this test case is given by

_ 27012 =
PX.Y.t) = poo (1 - % exp (2f)) . (50a)
u(xy.6) = uw(w exp (f)), (50b)
€(X —Xo)
v(x,y,t) = Uy (1 — omr exp (f)), (50c¢)
_ A
px.y,t) = pm<pm) . (50d)

where f = (1 — (X —X5)> — (¥ — Yo — Usot)?)/2r2. To match the con-
ditions of Vincent et al. [54] and Witherden et al. [29], we
set the free-stream conditions t0 P =1, U =1, and py =
(0U2)/(yM2,), where the free-stream Mach number is Mo, =
0.4. We prescribe the size and strength of the vortex to be r. = 1.5
and € = 13.5, respectively, and initially position the vortex at the
center of the domain located at (x,,y,) = (20, 20).

The computational domain Q = {x,y e R | 0 < x,y < 40} is par-
titioned using four different meshes of 1202, 1402, 1602, and 1802
elements. The upper and lower boundaries are treated as periodic
while the left and right boundaries are prescribed free-stream con-
ditions. These conditions result in modeling an infinite array of
coupled vortices; however, the impact of the vortex on the free-
stream at the boundaries is negligible since the vortex size r. is
small compared to the length L = 40 of the domain and the vortex
strength exponentially decays from its origin [54]. Therefore, we
are effectively modeling a vortex propagating through an infinite
domain. We consider a polynomial order » = 3, which gives 4802,
5602, 6402, and 7202 DoF for the various meshes. We use Davis’



C. Cox, W. Trojak, T. Dzanic et al.

10* — U
102 /
— 1,p=5
--- fo,p =4
10° 1| FRsp,p =5
= FRgp,p =4
\Lﬁ/ 10—2 SD,p =4
—— SD,p=5
1074
10-6
10°

(a) 120 DoF.

Computers and Fluids 221 (2021) 104922

1072
1073
S
M 10—8 fo,p =5
---  1.p=4
——FRgp,p =5
—11 FRSD,]Q=4
10 SD,p =4
—— SD,p=5 -
1’\ l'l If\'l
10_14 il Ly A Wil
10° 10! 102
k
(b) 600 DoF.

Fig. 2. Energy spectrum comparison of FRsp and SD with centrally-differenced interfaces after one time period averaged over 1x10? initial conditions.
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Fig. 3. Isentropic Euler Vortex: (a) » = 3 solution of density p after 45 advective flow cycles (t = 1800s) in the domain € = {x,y e R | 0 < x,y < 40} which is partitioned
into 1202 elements, (b) enlarged image of the vortex centered at the origin (x,y) = (20, 20) at t = 1800s.

form of the Rusanov approximate Riemann solver [62] to compute
inviscid numerical fluxes at the interfaces between elements, and
we use the low-storage, five-stage, fourth-order accurate Runge-
Kutta scheme of Carpenter and Kennedy [63] with a time step
of At =1.25 x 1073 to explicitly march the solution through time.
This time step is small enough such that all truncation errors are
dominated by the spatial discretization.

To assess the order of accuracy, we compute the L2-norm of the
density error ||e||, inside an integration window Q; = {x,y e R | —
2<Xx—%X <2, —2<y—Yo<2} at each moment in time the vor-
tex advects through the entire computational domain and returns
to the origin, which occurs when t = t*L/u, for t* € {1,2,...,45}.
Fig. 3 demonstrates the integrity and centering of the vortex about
the origin after 45 advective flow cycles. The L2-norm of the den-
sity error is defined as

lell, = \//Q (Pn(x.y) — pe(x.¥))? dx

where pp(x,y) is the numerical density and pe(x,y) is the ex-
act analytical solution given in Eq. (50a) at t = 0. To approximate
the integrals in Eq. (51), we apply a more than sufficient high-
strength quadrature rule. To compare our results against those ob-
tained by [54] and [29], we plot the observed convergence of the
FRsp and SD schemes in Fig. 4, where the order of accuracy at any
given time is determined by computing the slope of the line given
by a least-squares fit of log(|le||,) as a function of log(h). For the
four different meshes, we use grid spacings h € {1/3,2/7,1/4,2/9}.
For comparison, we also plot results from other FR schemes built
into the current solver in Fig. 4 including FRpg, FR, and DFR. We
observe an approximate 2z + 1 level of accuracy under FRpg at
t = 1800s and 2 under FRgp. We also confirm that the super accu-
racy of the DFR scheme is equivalent to that of FRpg since solution
points are placed at corresponding Gauss-Legendre points.

We can recast the nodal form of the solution polynomial
into its modal form by using a set of modal basis functions—
orthogonal Legendre polynomials %;(§). Z;(n)—and their cor-
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Table 1
Inviscid, subsonic flow over 2D cylinder: numerically-generated entropy
(Jkg~'K~1) under FRsp and SD.

7 T T
_____ T LN
61 p BERRREES
5 ’ e e
S 5/ IS5 iiingpes ,
% /// e 58
X e P e ——FRpe
e -~ -FRsp
A FR, ||
.o DFR
e SD
3 | L | | L
0 300 600 900 1200 1500 1800

t(s)

Fig. 4. Isentropic Euler Vortex: super accuracy with » = 3 for various discontinuous
spectral element schemes—FRpg, FRsp, FRy, DFR and SD.

responding modal coefficients ¢;; [3]. Following the work of
Spiegel et al. [64], we plot |¢; j| within each element (see Fig. 5),
normalizing by the mean mode and zeroing all modes less than
1 x 107, In these images, the values of |ci j| in the lower left cor-
ner of each element correspond to the magnitude of the mean
mode ¢ 0% (§)Z (7). The values in the upper right corner of
each element correspond to the magnitude of the highest Legendre
mode ¢, ,<%,(§)Z,(n). From left to right and bottom to top, these
modal coefficients correspond to the magnitude of the Legendre
modes of increasing order with respect to & and 7, respectively,
up to ». Under FRgp, we demonstrate in Fig. 5 that the higher fre-
quency modes in regions away from the vortex are more energized
in comparison to SD. The larger magnitudes of the higher modes
in FRgp can be attributed to aliasing errors. By comparison, the
SD scheme is successful at suppressing this energy at the higher
modes, with the dominant modes away from the vortex being the
lowest order mean mode, which is consistent with analytic solu-
tion. In turn this produces a lower error in the solution, as demon-
strated by the time history plot of the L2-norm of density shown
in Fig. 6a. As a result, this causes rate of convergence history to
initially increase sharply to a level above 27, between t = 0s and
t = 480s, then level off for the remaining portion of the simulation.
This rapid approach to an order greater than 2 indicates favorable
accuracy properties of the SD scheme, thereby reducing contami-
nation of the solution from aliasing errors. This result is consis-
tent with the analytical findings presented in Eqs. (40) and (41).
Ultimately, this offers improved stability when performing implicit
large eddy simulations of turbulent flow problems such as those
studied in Section 5.4 and Sec 5.5.

5.3. Inviscid, subsonic flow over a cylinder

In this section, we simulate the steady, two-dimensional, invis-
cid, subsonic flow over a cylinder as governed by the compressible
Euler equations. This test case is constructed to assess numerically-
generated entropy and was used in Mengaldo et al. [65] to test
the effectiveness of global de-aliasing for the FRpg scheme at dif-
ferent polynomial orders. Ideally, zero entropy should be gener-
ated for an inviscid, subsonic simulation, however aliasing in the
numerical method introduces a mechanism allowing the build-up
of entropy. To reduce numerical entropy generation due to the
mesh representation of the cylinder wall, the curvature of the
cylinder is represented with 176 quartic elements with 54 ele-
ments in the radial direction. The mesh, shown in Fig. 7a, ex-

7 FRsp SD e

ASmin ASmax ASmin ASmax
2 -195x10"2 1.83x1072  -6.72x103  4.93x10* 4/3=1.33
4 -967x10° 9.68x10°  -9.69x105  9.72x10"°>  6/5=1.20
6 -9.79x10°>  9.79x10~° -9.78x10~>  9.69x10° 8/7=1.14

tends 10d into the farfield and contains a total of 176 x 54 =
9504 elements. The simulation was run at a freestream Mach
number of My, =0.2 with =2, =4 and =6 using the
low-storage, four-stage, third-order embedded Runge-Kutta time
integration scheme—abbreviated RK[4,3(2)]-2N—of Carpenter and
Kennedy [66,67] with adaptive time-stepping.

Mach number contours from the » = 6 solution for FRgp and SD
can be seen in Figs. 7b and 7 c, respectively, appearing qualitatively
identical. Results of numerically-generated entropy (Jkg='K-1) for
n€{2,4,6} are shown in Fig. 8 and tabulated in Table 1. Ref-
erence values of pressure, density and specific gas constant are
101 325 N m~2, 1.225 kg m—3 and 287.05 Jkg~'K~!, respectively.
For »=4 and =6, similar results for both FRsp and SD were
observed, with entropy generation ranging between +9.79 x 10~
throughout the entire domain, with the difference in results be-
tween the two schemes being negligible at these polynomial or-
ders. However, for the =2 case shown in Figs. 8a and 8 d,
the results demonstrate entropy build-up near the two stagna-
tion points located on the windward side and leeward side of
the cylinder, with a larger quantity of entropy build-up down-
stream. The minimum and maximum entropy values are approx-
imately Aspin = —1.95x 1072 and Asmax = 1.83 x 102 for FRgp
and Aspi, = —6.72 x 1073 and Asmax = 4.93 x 10~4 for SD. These
results demonstrate reduced numerical entropy generation under
SD by a factor of approximately three, indicating more favorable
results for this particular under-resolved case at » =2 where the
ratio of flux points to solution points (z+2)/(z+ 1) is greatest
for the SD scheme.

5.4. Taylor-Green vortex at Re = 1600

In this section, we simulate the Taylor-Green vortex (TGV)—a
simple, canonical problem in fluid dynamics often used to study
vortex dynamics and turbulent transition and decay [68]. The
problem consists of a cubic volume of fluid initially containing
a smooth distribution of vorticity. As time evolves, the vortices
roll-up, vortex lines stretch, and vorticity intensifies. The large-
scale vortical structures break down and small-scale eddies are
produced, ultimately resulting in the transition to turbulence [69].
Eventually, the small-scale turbulent motion dissipates all the en-
ergy and the fluid comes to rest. This test case is consistently
used to evaluate turbulent flow simulation methodologies by the
International Workshop on High-order Methods in Computational
Fluid Dynamics held at the American Institute of Aeronautics
and Astronautics Aerospace Sciences Meeting [70]. Various authors
have demonstrated success in using high-order schemes to pre-
dict this flow field, and the current work complements existing
results in the literature from discontinuous spectral element meth-
ods [19,71-73]. Specifically, we use the TGV to compare the accu-
racy and stability between the SD and FRsp schemes for under-
resolved simulations of turbulent flow.

The initial conditions of velocity and pressure for the TGV are
given by

p

0(x.y.2,0) = ==

R, (52a)
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Fig. 5. Isentropic Euler Vortex: modal coefficients for =3 on the subdomain {x,y | 20 < x < 30,20 <y < 30} on a 120 x 120 grid after one advective flow cycle (t = 40s).
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Fig. 6. Isentropic Euler Vortex: L?>-norm of density error ||e||, as a function of time for » =3 (a) SD (black) and FRsp (red), (b) L?>-norm of density error as a function of grid
spacing h at t = 1800s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Inviscid, subsonic flow over 2D cylinder: mach number (a) mesh; (b) FRsp, 2= 6; (c) SD, = 6.
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Fig. 8. Inviscid, subsonic flow over 2D cylinder: entropy (a) FRsp, 72 = 2; (b) FRsp, 2=4; (c) FRsp, 2= 6; (d) SD, 2= 2; (e) SD, » =4, (f) SD, »=6.

s - (s (o)
woreowes(nes() o
w(x,y,2,0)=0 (52d)
a0t b () o () (2) 2

(52e)

where the reference velocity, density, and Mach number are u, =
1, po=1, and M, = 0.1, respectively. The quantity L defines a
length scale for the problem; Reynolds number is defined as Re =
(polloL) /14, and is set at 1600. The fluid is modeled as a perfect
gas with a specific heat ratio of y = 1.4 and Prandtl number of
Pr=0.71. From the ideal gas law RT, = p,/po, and if we initial-
ize the flow field with the assumption of isothermal flow, then
D/ P = Po/pPo. This relationship allows the initial density field to be
set according to Eq. (52a). The flow is computed inside a square
domain Q ={x,y,z | 0<x,y,z<2mwL} with periodic boundaries
using a low-storage, five-stage, fourth-order accurate Runge-Kutta
time integration scheme with a constant time step. A character-
istic convective time scale can be defined as t. = L/u,. The non-
dimensional integrated kinetic energy is

—;/1 u-udx
_pougv sz

where V is the total volume of the domain and dx = dxdydz. For
this test case we choose L =1 such that the total volume is V =

(53)

1

873. The principal method of testing turbulent flow simulation
methodologies using the TGV test case is to compute and track the
dissipation rate of the kinetic energy through time. The dissipation
rate based upon the kinetic energy is

dK
K) =— 4
(k) = -3 (54)
where t* = tu,/L. The non-dimensional integrated enstrophy is
.= te L (55)
poV Jo2?

For strictly incompressible flow, the non-dimensional theoretical
vorticity—based dissipation rate is proportional to ¢ by

€ =—2F. 56
©) = pauz tf (56)
In a compressible fluid, the non-dimensional theoretical dissipation
rate is based upon the summation of the following three terms

e(Sd)_ 2’“‘— / s?:sdx, (57a)
e€(p)=— ,ODUZV/ pV -udx, (57b)
() = s / (V- u)? dx (57¢)

where E(Sd) and €(p) are the dissipation terms based upon the
deviatoric strain-rate tensor S¢ and pressure dilatation, respec-
tively. Under Stokes’ hypothesis, the bulk viscosity u, is assigned a
value of zero, which leads to the second coefficient of viscosity tak-
ing the value A = —2/3u; therefore, the dissipation due to the bulk
viscosity is neglected. Furthermore, for low Mach number flows
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(a)

with negligible compressibility effects, the theoretical dissipation
rate reasonably approximates the integrated enstrophy and can be
estimated by €(s?). In these simulations, we compute the theo-
retical dissipation rate as €(S%) +e(p). All integrals are approxi-
mated with a sufficiently high-strength quadrature rule. The mea-
sured dissipation rate €(K) is computed during post-processing
using second-order finite differences to approximate the tempo-
ral derivative of the kinetic energy. A reference solution has been
provided by van Rees et al. [74], which has to be scaled by a
factor of 1/2 V to match the presentation of the current results.
These authors performed a direct numerical simulation (DNS) at
Re = 1600 using a pseudo-spectral method on the incompressible
Navier-Stokes equations with a resolution of 5123,

5.4.1. Well-resolved

First, we perform well-resolved simulations of the TGV using a
643 grid and = 3, giving a total of 2563 DoF, to show the ability
of both SD and FRgp to accurately capture the flow physics of the
TGV and its transition to and subsequent decaying of turbulence.
All simulations for this test case are run using Davis’ form of the
Rusanov approximate Riemann solver such that a close compari-
son can be made to the results from Vermeire et al. [75] who used
FRpg with similar initial conditions. The time step size used in this
simulation is a constant 4x10~4. Fig. 9 demonstrates the roll-up
of the vortex sheets at t* =5, the transition to turbulence leading
to the production of small-scale vortical structures at t* = 11, and
the subsequent decaying of these structures depicted at t* = 20.
Results of €(K) and €(S%) + €(p) in Fig. 10a and Fig. 10b indicate
little discrepancy between the measured and theoretical dissipa-
tion rates, with the peak dissipation rate occurring near t* =9.
The actual difference between € (K) and €(5%) + €(p) is plotted in
Fig. 10c and can be attributed to numerical dissipation and disper-
sion, non-conservation in evaluating the derivative of the conser-
vative variables since the scheme is only guaranteed to be C° con-
tinuous [19], and numerical errors aliased from the higher modes
to the lower ones. We can observe that the maximum difference
under SD is approximately 60% of that exhibited under FRsp. The
pressure dilatation-based dissipation rate—which measures com-
pressibility effects on the dissipation of turbulent energy—among
the two schemes is essentially identical and shown in Fig. 10d.
Maximum values of €(p) are approximately 2x10~4.

Following the procedure laid out in Brachet et al. [69], we
compute the spherically-averaged energy spectra E(x) at the peak
dissipation rate (t* =9). Results are plotted in Fig. 11 for both
schemes against the reference DNS result. Both SD and FRsp exhibit
an accumulation of energy near the cutoff wavenumber x = 128
due to the dissipation inherent to the Riemann solver [20]. Sharp

(b)

Fig. 9. TGV: SD result of Q-criterion (QL?/u2 = 1.5) colored by velocity magnitude at (a) t* = 5, (b) t* = 11 and (c) t* = 20 on a 643 grid using z = 3 (256> DoF).
0

12
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dissipation is known to promote this pile-up of energy prior to
the dissipation range and induce a more pronounced bottleneck ef-
fect [76]. This build-up of energy at the smallest captured scales is
related to contamination of the true physics by numerical errors
such as dispersion.

5.4.2. Under-resolved

We perform under-resolved simulations of the TGV using an
83 grid while increasing » to see the effect of higher polynomial
orders on stability for true spectral difference and the modified
spectral difference recovered via the flux reconstruction formula-
tion. We start the simulations at » =3 and increment the poly-
nomial order by 1 until both schemes produce unstable solutions,
which occurs at z = 8. Therefore, we are considering seven differ-
ent levels of resolution: 243, 323, 403, 483, 563, 643 and 723 DoF.
To reduce the amount of numerical dissipation, we run all simu-
lations for this test case using Roe’s scheme [77] for the approxi-
mate Riemann solver. Results of € (K) and €(S9) + €(p) are plotted
in Fig. 12. In Fig. 12a, we observe a large amount of numerical dis-
sipation in the results computed using » = 3, whereby the rate of
kinetic energy loss is overestimated at earlier times in the simula-
tion, where the flow is restricted to a smaller range of scales. The
simulation from FRgp is quickly rendered unstable at » = 4, largely
due to aliasing errors produced at the higher wavenumbers when
substantial roll-up of the vortex sheets occurs near t* = 5—this
blowup in the solution occurs at similar times for all higher val-
ues of . The simulations from the SD scheme, on the other hand,
demonstrate that as z is increased further, the solution is stable
and the difference between the measured dissipation rate due to
kinetic energy and the theoretical dissipation rate becomes smaller,
and the result from €(S%) + €(p) approaches the DNS result up to
2 =17. However, the SD solution does become unstable at » =8
near t* = 5. Overall, these results indicate suppressed aliasing er-
rors in and enhanced stability of the SD scheme on coarse grids
with higher polynomial orders when performing under-resolved
turbulence simulations without any filtering, subgrid-scale model-
ing, or de-aliasing.

5.5. SD7003 at Re = 60000, o = 8°

We perform implicit large eddy simulations of the transitional
flow of a Selig-Donovan (SD) 7003 airfoil [78,79] at Re = 60000,
Mach number M = 0.2 and angle-of-attack o = 8°. This test case is
commonly used to assess a numerical scheme’s ability to predict
separation and transition in a turbulent flow [16,17,80-82], and we
compare results from the flux reconstruction and spectral differ-
ence schemes without any filtering, subgrid-scale modeling, or de-
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Fig. 10. TGV: (a) measured dissipation rate based on kinetic energy € (K), (b) theoretical dissipation based on strain-rate €(S¢) and pressure dilatation €(p), (c) differ-
ence between (a) and (b) €(K) — e(5%) — €(p). (d) pressure dilatation € (p). Results are from a 643 grid using =3 (256% DoF). DNS results have been provided by van

Rees et al. [74].

100

10710+

1071 '
10! 102

10°
K

Fig. 11. TGV: energy spectra at t* =9 on a 64° grid using 2 =3 (256° DoF). The
cutoff wavenumber (—) and the -5/3 slope (——) are plotted in gray. DNS results
have been provided by van Rees et al. [74].

aliasing. Laminar flow separation and reattachment occurs on the
upper surface of the airfoil, forming a laminar separation bubble
(LSB) near the leading edge. Lift and drag on an airfoil can be sig-
nificantly affected by an LSB, which can cause stability and con-
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trol issues. The flow experiences transition near reattachment in
the unsteady solution, which causes a region of turbulence over a
large portion of the airfoil's upper surface and a turbulent wake
downstream of the airfoil.

To perform these simulations, we use two meshes of differ-
ent resolution as shown in Fig. 13, the first (mesh A) of which
was provided by Vermeire et al. [75]. We use these two differ-
ent meshes to study the ability of each scheme to simulate under-
resolved transitional and turbulent flow at varying levels of 2.
Mesh A contains a total of 137916 hexahedral elements with 12
elements in the spanwise direction. The domain extends 10c up-
stream and 20c downstream of the airfoil and extends in the span-
wise direction by 0.2c, where c is the chord length. This spanwise
length is deemed sufficient for capturing spanwise structures [16].
We use this mesh to verify our implementation and directly com-
pare results to those from a well-established FR implementation in
PyFR [75]. For this mesh, we set » = 4 to make a direct comparison
to these results which gives approximately 1.723x107 DoF. We can
attribute any disagreement in results to be caused by different ap-
proaches taken to compute interface viscous fluxes and implement
airfoil wall boundary conditions. Vermeire et al. used the LDG ap-
proach to compute viscous numerical fluxes while we used BR2
(both of our implementations employ Rusanov-type approaches to
compute inviscid numerical fluxes). Also, we note that the initial
conditions of the flow field are different. The second mesh con-
structed (mesh B) is a coarser mesh that contains a total of 33264



C. Cox, W. Trojak, T. Dzanic et al.

0.015

— - -DNS

0.01+

0.005

(a)
0.015

0.01+

0.005

0.015

0.01+

0.005 |

Computers and Fluids 221 (2021) 104922

0.015

——-DNS

0.01+

0.005 ¢

(b)
0.015

0.01+

0.005 ¢

(d)

0.015

0.01+

0.005 ¢

10 15
t*
®

20

Fig. 12. TGV: measured dissipation rate based on kinetic energy € (K) (black) and theoretical dissipation rate based on strain-rate and pressure dilatation €(s%) +€(p) (red)
on a 8% grid; (a) =3, (b) z=4, (c) z=5, (d) z=6, (e) z=7, (f) 2=8. DNS results have been provided by van Rees et al. [74]. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

elements with 8 elements in the spanwise direction, which pro-
vides roughly the same number of degrees of freedom (1.703x107)
using » = 7. The upper surface of the airfoil in mesh A and mesh B
is represented with 173 and 110 elements along the chord, respec-
tively. This gives a total of 5.19x10* DoF on the upper surface in
mesh A and 5.63x10* DoF in mesh B. To better capture the solid
boundary curvature, the airfoil surface is represented by quartic
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elements. A no-slip adiabatic boundary condition is used for the
airfoil surface, Riemann invariant boundary conditions are applied
to the far field, and periodic conditions are applied in the span-
wise direction. We use the low-storage, four-stage, third-order em-
bedded pair time integration scheme (RK[4,3(2)]-2N) with adap-
tive time-stepping to integrate in time. We march forward in time
for 30t;, where t. = c/uy, is one convective time period. At 20t.
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Fig. 14. SD7003 at Re = 60000, o = 8°: isosurface of Q-criterion (Qc?/u% = 500) colored by velocity magnitude obtained using the SD scheme at = 7.
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Fig. 15. SD7003 at Re = 60000, o = 8°: (a) pressure coefficient C;, (b) upper surface skin friction coefficient C;. Results corresponding to » =4 and » =7 are obtained on
mesh A and B, respectively. Results from Beck et al. [17] and Vermeire et al. [75] are provided for reference.

the flow is considered fully developed, and we collect time and
spanwise-average statistics between 20t and 30t,.

Fig. 14 displays an isosurface of the Q-criterion (Qc?/u2, = 500)
colored by velocity magnitude from the SD scheme with »=7.
Time and spanwise-averaged plots of the pressure and skin fric-
tion coefficients are shown in Fig. 15. We report maximum skin
friction values in the turbulent region above the airfoil using SD
of 8.3x1073 (mesh A, 2 =4) and 8.5x10~3 (mesh B, z=7) and
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FRpc of 7.3x1073 (mesh A, 2 =4). This gives yt values of 8.95,
12.54 and 8.40, respectively. However, the corresponding y* val-
ues of the first solution point nearest the airfoil surface, y*|sp,
are 0.42, 0.25 and 0.39. Table 2 demonstrates that averaged val-
ues of the lift coefficient C; and drag coefficient Cp as well as
time and spanwise-averaged values of flow separation xs/c and
reattachment x;/c locations of the laminar separation bubble are
in agreement with various discontinuous spectral element results
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Table 2
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SD7003 at Re = 60000, o = 8°: averaged lift coefficient C;, drag coefficient Cp, separation location xs/c, and
reattachment location x,/c. Unstable simulations are indicated by the symbol X. Results from various authors

are provided for reference.

Author Scheme Mesh  Elements 7 C Cp Xs/C Xr/C
Current SD A 137 916 4 0.938 0.049 0.032 0317
FRsp A 137 916 4 X X X X
FRpg A 137 916 4 0.942 0.051 0.031 0.330
SD B 33 264 7 0.940 0.048 0.028 0.301
FRsp B 33 264 7 X X X X
FRpg B 33 264 7 X X X X
Vermeire et al. [75] FRpg A 137 916 4 0.941 0.049 0.045 0.315
Romero [85] DFR - 202 500 4 0.950 0.045 0.035 -
Beck et al. [17] DGSEM - 66 500 3 0.923 0.045 0.027 0.310
Beck et al. [17] DGSEM - 8 900 7 0.932 0.050 0.030 0.336
Garmann et al. [82] FD (6th order) - 12 549 120 - 0.969 0.039 0.023 0.259

Table 3

Wall-clock time to compute V - F in mesh A us-
ing 48 Intel Xeon E5-2680 v4 processors, nor-
malized by total degrees of freedom, number of
equations, and number of RK stages. All calcu-
lations are done using double precision.

Scheme trar (1x107%)
SD 0.5920
FR 0.5924

of implicit large eddy simulation found in the literature. The re-
sults from Beck et al. [17] are generated using a discontinuous
Galerkin spectral element method (DGSEM) with polynomial de-
aliasing to prevent instabilities, without the use of other stabiliza-
tion techniques such as filtering, subgrid-scale modeling, or arti-
ficial dissipation. The de-aliasing approach used in their work re-
duces the approximation error associated with numerical integra-
tion of the nonlinear fluxes, which allows for stable solutions on
coarse grids at moderate Reynolds numbers. The results from Gar-
mann et al. [82], who used a 6th order finite difference scheme,
are also provided in the table. We report here that under SD, the
simulation is stable on both the coarse mesh ( = 7) and fine mesh
(2 =4). Under FRpg, the simulation is rendered unstable only on
the coarse mesh, and under FRsp, the simulation is unstable on
both meshes. These findings demonstrate the extra stability af-
forded by the staggered arrangement of flux points inherent to
the SD scheme for achieving a stable under-resolved implicit large
eddy simulation of transitional flow using a higher polynomial or-
der on a coarse grid. In regards to the results obtained with the
FRpg and FRgp schemes, the analysis in Section 3 does not specif-
ically address the different stability properties among the various
correction functions within FR; however, it is thought that the en-
hanced accuracy and lower dispersion errors [83,84] afforded by
FRpg over FRgp suppress numerical instabilities. In light of the FR
results for this test case, we recommend the use of FRp instead of
FRsp when filtering or de-aliasing is not applied for these under-
resolved simulations of turbulent flows.

5.5.1. Computational cost

Performance of the spectral difference and the flux reconstruc-
tion schemes was measured using the simulations on mesh A in
terms of wall-clock time taken to compute the divergence of the
flux V-F = 0xf + dyg+ 0;h, normalized by the total degrees of
freedom, number of equations to solve, and number of stages k
in the time stepping scheme, such that t* . = tq1/DOF/Neq/k. All
simulations have been done using double precision. The results
shown in Table 3 demonstrate that, with the current high-order
framework of the solver, the performance of the spectral differ-
ence and flux reconstruction schemes is approximately identical
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on mesh A using » =4 in computing transitional flow past the
SD7003 airfoil. In addition to previous computational performance
assessments [86], these results offer a complimentary and more
supportive view on the efficiency of the spectral difference scheme.

6. Conclusions

We reported the development of various discontinuous spec-
tral element methods within a single high-order coding frame-
work such that a fair and impartial comparison among several nu-
merical schemes may be performed—most notably the true spec-
tral difference and flux reconstruction methods. With this con-
struct, we were able to assess the accuracy, stability, and perfor-
mance of these two schemes. Furthermore, we provided a novel
nonlinear stability analysis of the spectral difference scheme and
demonstrated that the error bound for this scheme can be smaller
than the flux reconstruction scheme due to the staggered nature
of the flux points. We performed a number of numerical experi-
ments to support this analysis, such as heterogeneous linear advec-
tion, isentropic Euler vortex, inviscid, subsonic flow over a cylin-
der, Taylor-Green vortex at Re = 1600, and transitional flow past
the SD7003 at Re = 60000. These results highlight the advantages
of using the baseline SD scheme on coarse grids with high poly-
nomial orders and demonstrate the potential for extra stability af-
forded by the SD scheme across a range of polynomial orders—an
important feature that makes the scheme more suitable for achiev-
ing stable under-resolved implicit large eddy simulations than its
FR counterpart. The SD scheme coupled with an appropriate LES
model [87] can address the issue of reliably reproducing, under dif-
ferent polynomial orders, sub-grid scale interactions necessary for
solving practical, high Reynolds number turbulent flows, especially
when considering z-adaptive techniques. In conclusion, based on
both numerical analysis and experiments, we find that the pure
spectral difference method can be more robust for nonlinear prob-
lems than its flux reconstruction analog, incurring less of a need
for de-aliasing.
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