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A B S T R A C T
We introduce a novel positivity-preserving numerical stabilisation approach for high-order
discontinuous spectral element approximations of compressible multi-species flows. The un-
derlying stabilisation method is the adaptive entropy filtering approach (Dzanic and Witherden,
J. Comput. Phys., 468, 2022), which is extended to the conservative formulation of the multi-
species flow equations. We show that the straightforward enforcement of entropy constraints
in the filter yields poor results around species interfaces and propose an adaptive switch for
the entropy bounds based on the convergence properties of the pressure field which drastically
improves its performance for multi-species flows. The proposed approach is shown in a variety of
numerical experiments applied to the multi-species Euler and Navier–Stokes equations computed
on unstructured grids, ranging from shock-fluid interaction problems to three-dimensional
viscous flow instabilities. We demonstrate that the approach can retain the high-order accuracy
of the underlying numerical scheme even at smooth extrema, ensure the positivity of the species
density and pressure in the vicinity of shocks and contact discontinuities, and accurately predict
small-scale flow features with minimal numerical dissipation.

1. Introduction
The interaction and mixing of miscible fluids remain extensively studied phenomena, spanning various application

areas such as combustion, climate modelling, and chemical process engineering [12, 30, 37, 42]. This behaviour is
further complicated in specific applications with high-speed flows as fluid velocities are sufficiently large such that
the compressibility effects cannot be ignored. The interaction of these multi-species flows with high Mach number
effects, exhibiting features such as shocks, contact discontinuities, rarefaction waves, and species interfaces, poses a
significant challenge for numerical modelling approaches. As such, the development of high-fidelity numerical methods
for compressible multi-species flows remains an ongoing field of research with the potential for use in many practical
applications.

Various models have been proposed for compressible multi-species flows, with the early work of Baer and Nunziato
[6] presenting some competing approaches and introducing the now widely-adopted method of approximating the
evolution of the density of each species along with the total momentum and energy. This conservative formulation
can be straightforwardly implemented and is equally valid in both the incompressible, subsonic and compressible,
supersonic regimes. While this approach suffers from the deficiency that conservative formulations cannot preserve
pressure equilibrium across species interfaces [2, 3, 25, 26], its conservative nature ensures that it can accurately predict
shock speeds and strong compressibility effects and, as a result, is critical for modelling multi-species flows in the high
Mach regime. However, complex flow features in this class of flows present a challenge in developing efficient and
accurate numerical approaches for these governing equations.

For obtaining these high-fidelity approximations of complex fluid flows, high-order discontinuous spectral element
methods (DSEM) have grown in popularity, primarily due to their geometric flexibility, arbitrarily high-order accuracy,
and compact data structure suited for high-performance computing. These benefits come at the expense of robustness
issues, often in the form of numerical instabilities around discontinuous flow features commonly encountered in the
approximation of compressible multi-species flows. The use of DSEM for this class of flows has been attempted
in the works such as that of Billet and Ryan [8], Johnson and Kercher [26], Peyvan et al. [32], and Tonicello and
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Ihme [41], and these approaches broadly rely on the use of additional numerical stabilisation techniques to ensure
that the solution remains well-behaved in the vicinity of discontinuities. However, much like in the application of
high-order DSEM to single-species gas dynamics and viscous fluid flows, it is notoriously difficult to design numerical
stabilisation approaches that guarantee that the solution remains well-behaved while retaining the accuracy of the high-
order numerical scheme, particularly so in a computationally efficient manner without the use of problem-dependent
tunable parameters.

Therefore, this work aims to introduce and validate a robust and efficient numerical approach for simulating both
inviscid and viscous compressible multi-species flows in the context of DSEM. This proposed approach is provably
robust in that it guarantees that physical constraints such as positivity of density and pressure are satisfied while also
retaining the high-order accuracy and scale-resolving capabilities of DSEM in smooth regions of the flow. Furthermore,
it can be efficiently implemented on general unstructured meshes and does not require problem-dependent tunable
parameters. The underlying stabilisation method of this approach is the entropy filter of Dzanic and Witherden [14],
which enforces constraints such as positivity of density and pressure and a local minimum entropy principle through
an adaptive filtering procedure. We show that straightforward implementation of the entropy constraints in the filter is
exceedingly deficient for multi-species flows, particularly so around species boundaries, and yields poor results. We
then present a novel method for adapting the entropy bounds based on the pressure field by utilising the convergence
properties of DSEM through the approach of Krivodonova et al. [28] which significantly increases the accuracy of
the stabilisation approach for multi-species flows. This proposed approach is validated and presented across a variety
of multi-species problems on both structured and unstructured grids, ranging from simple transport and shock tube
problems to inviscid shock-fluid interactions and three-dimensional viscous flow instabilities.

The remainder of this paper is organised as follows. In Section 2, we present some preliminaries on the governing
equations and their properties as well as the underlying high-order DSEM. Then, we introduce in-depth the proposed
numerical stabilisation approach in Section 3, followed by implementation details in Section 4. The results of the
approach as applied to a variety of flow problems are then shown in Section 5, and conclusions are finally drawn in
Section 6.

2. Preliminaries
2.1. Governing equations

Assuming thermal equilibrium, the governing equations are given as the evolution of 𝑛 compressible species along
with total momentum and energy. We use a species composition based on mass fraction similar to that of Abgrall [1].
In conservation form, the inviscid limit can be represented as
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⎡

⎢

⎢
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and 𝜌 =
𝑛−1
∑

𝑖=0
𝛼𝑖𝜌𝑖 (2)

are the vector of species densities and the total density, respectively, 𝜌𝐕 ∈ ℝ𝑑 is the total momentum, and 𝐸 is the
total energy. Furthermore, 𝜌𝐕∕𝜌 is the velocity and 𝑃 is the pressure. To close this system, we utilise the equation of
state

𝑃 = (𝛾 − 1)𝜌𝑒 and 𝜌𝑒 = 𝐸 − 1
2
𝜌𝐕 ⋅ 𝐕, (3)

where 𝜌𝑒 is the internal energy and 𝛾 is the specific heat ratio of the total mixture. Assuming thermal equilibrium, this
specific heat ratio is calculated through the following mixture relation

𝛾 =
∑𝑛−1
𝑖=0 𝛼𝑖𝜌𝑖𝑐𝑝,𝑖

∑𝑛−1
𝑖=0 𝛼𝑖𝜌𝑖𝑐𝑣,𝑖

, (4)
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where 𝑐𝑝,𝑖 and 𝑐𝑣,𝑖 are the specific heat capacities at constant pressure and constant volume, respectively, of the given
species. This contrasts with the approach of Ton [40] where the thermal equilibrium assumption is removed.

The inviscid governing equations can be readily extended to their viscous formulation as

𝜕
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⎢
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, (5)

where 𝜇 and 𝑃𝑟 are the dynamic viscosity and Prandtl number of the mixture, respectively, and 𝑒 = 𝜌𝑒∕𝜌 is the specific
internal energy. There are several closure modules for the transport coefficients of the mixture [5, 20, 44]. In this work,
we opt for a simple mass fraction weighting, i.e.,

𝜇 = 1
𝜌

𝑛−1
∑

𝑖=0
𝛼𝑖𝜌𝑖𝜇𝑖 and 𝑃𝑟 = 1

𝜌

𝑛−1
∑

𝑖=0
𝛼𝑖𝜌𝑖𝑃𝑟𝑖, (6)

where 𝑃𝑟 is the Prandtl number as this model gives good agreement with the method of Wilke [44].
2.2. Entropy principles

From Gouasmi et al. [19], for a specific choice of entropy functional 𝜎, the inviscid (i.e., hyperbolic) governing
equations satisfy an entropy inequality in the form of

𝜕𝜌𝜎
𝜕𝑡

+ ∇ ⋅ (𝐕𝜌𝜎) ≥ 0, (7)

where

𝜌𝜎 =
𝑛−1
∑

𝑖=0
𝛼𝑖𝜌𝑖𝜎𝑖 (8)

is the mass fraction weighted entropy. The entropy of each species is defined as

𝜎𝑖 = ∫

𝑇

0

𝑐𝑣,𝑖(𝜏)
𝜏

d𝜏 − 𝑅𝑖 log(𝜌𝑖), (9)

where 𝑇 is the temperature and 𝑅 is the universal gas constant. Assuming that 𝑐𝑣 does not vary with temperature, this
mixture entropy can be expressed as

𝜎 =
𝑛−1
∑

𝑖=0
𝑐𝑣,𝑖𝛼𝑖𝜌𝑖 log

(

(𝛼𝑖𝜌𝑖)1−𝛾𝑖𝑇
)

, (10)

where
𝑇 = 𝜌𝑒

∑𝑛−1
𝑖=0 𝑐𝑣,𝑖𝛼𝑖𝜌𝑖

. (11)

Gouasmi et al. [19] showed that for any arbitrary 𝐱0, this entropy (and by extent, all convex functionals of it) satisfies
a local minimum entropy principle in the form of

𝜎(𝐱0, 𝑡 + Δ𝑡) ≥ min
𝐱∈𝐷0

𝜎(𝐱, 𝑡) (12)

for all Δ𝑡 ≥ 0, where 𝐷0 is the domain of influence of 𝐱0 over the range [𝑡, 𝑡 + Δ𝑡].
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2.3. Discontinuous spectral element methods
The governing equations as described by Eq. (5) can be presented in the form of a general conservation law as
𝜕
𝜕𝑡
𝐮(𝐱, 𝑡) + 𝛁⋅𝐅(𝐮) = 0, (13)

where 𝐮 is the vector of conserved variables and 𝐅 is the flux. We present here a very brief overview of the nodal
discontinuous spectral element method (e.g., discontinuous Galerkin [22], flux reconstruction [24], etc.) as applied to
first-order hyperbolic conservation laws, but for a more in-depth description and the extension to second-order systems,
the reader is referred to Hesthaven and Warburton [22] and Huynh [24] (and the referenced works therein).

In this approach, the domain Ω is partitioned into 𝑁 elements Ω𝑘 such that Ω =
⋃

𝑁𝑒
Ω𝑘 and Ω𝑖 ∩ Ω𝑗 = ∅ for

𝑖 ≠ 𝑗. With a slight abuse of notation, the discrete solution 𝐮(𝐱) within each element Ω𝑘 can be formed through a nodal
approximation as

𝐮(𝐱) =
∑

𝑖∈
𝐮𝑖𝜙𝑖(𝐱), (14)

where 𝐱𝑖 ∀ 𝑖 ∈  is a set of solution nodes, 𝜙𝑖(𝐱) are their associated nodal basis functions, and  is the set of nodal
indices for the stencil. The basis functions possess the property that 𝜙𝑖(𝐱𝑗) = 𝛿𝑖𝑗 . We utilise the notation that 𝐮𝑖 = 𝐮(𝐱𝑖)and that ℙ𝑝 represents a 𝑝-th order approximation, taken as the maximal order of 𝐮(𝐱). Furthermore, we assume that
on the element interfaces 𝜕Ω𝑘, there is a set of interface nodes 𝐱𝑖 ∈ 𝜕Ω ∀ 𝑖 ∈ , where  is a set of nodal indices for
the interface stencil that is a subset of the solution nodes (i.e.,  ⊂ ). Due to the piecewise continuous nature of the
solution approximation, there exist two values of the solution at each of these interface nodes, one from the element
of interest, denoted as 𝐮−𝑖 , and one from the interface-adjacent element, denoted as 𝐮+𝑖 .

A general formulation for the approximation of the flux 𝐟 (𝐱) in DSEM can be given as a collocation projection of
the flux onto the solution nodes augmented with an interface correction term to account for inter-element interactions.

𝐟 (𝐱) =
∑

𝑖∈
𝐅
(

𝐮𝑖
)

𝜙𝑖(𝐱) +
∑

𝑖∈
𝐅
(

𝐮−𝑖 ,𝐮
+
𝑖 ,𝐧𝑖

)

⋅ 𝐧𝜙𝑖(𝐱). (15)

Here, 𝐅 (

𝐮−𝑖 ,𝐮
+
𝑖 ,𝐧𝑖

) denotes some common interface flux dependent on the interior/exterior values of the solution
at the interfaces and their respective normal vector 𝐧𝑖, which is commonly computed using exact or approximate
Riemann solvers, e.g., Godunov [18], Rusanov [36], Roe [35]. Furthermore,𝜙𝑖(𝐱) denotes the correction basis function
associated with the given interface node 𝐱𝑖, which can be appropriately chosen to recover methods such as the
discontinuous Galerkin approach (see Huynh [24]). With this approximation of the flux, the semi-discrete form of
the governing equations, given as

𝜕
𝜕𝑡
𝐮𝑖 = −𝛁 ⋅ 𝐟 (𝐱𝑖), (16)

can be readily advanced in time using a suitable temporal integration algorithm.

3. Methodology
In this section, we introduce the proposed stabilisation method for high-order DSEM approximations of com-

pressible multi-species flows. The underlying mechanisms of this approach rely on the properties of DSEM and
the governing equations presented in Section 2. We assume here that the numerical discretisation is chosen such
as to recover the nodal discontinuous Galerkin method [22] (either directly or via the flux reconstruction method
[24]), strong-stability preserving (SSP) explicit time stepping is used, and the common interface fluxes are computed
using a positivity-preserving entropy-stable Riemann solver. The method is first introduced with respect to inviscid
compressible multi-species flows and extensions to their viscous counterparts are later presented.
3.1. Adaptive entropy filter

To stabilise the solution in the vicinity of discontinuities in a robust manner, Dzanic and Witherden [14] introduced
a novel method of enforcing discrete constraints on the solution via an adaptive filtering procedure. We present here a
W. Trojak et al.: Preprint submitted to Elsevier Page 4 of 22
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brief overview of the entropy filtering approach in the context of the original work in single-species gas dynamics
and then show how this method can be extended to the multi-species system as well as what modifications and
improvements are necessary. The goal of the approach is to ensure that

𝚪
(

𝐮𝑖
)

> 0 (17)
is satisfied for all 𝑖 ∈  , where 𝚪 (𝐮) = {Γ1 (𝐮) ,Γ2 (𝐮) ,…} is some set of constraint functionals typically related
to convex invariants of the system. To ensure robustness, physical constraints were enforced in the form of positivity
of density and pressure (i.e., Γ1 (𝐮) = 𝜌, Γ2 (𝐮) = 𝑃 ). However, simply enforcing these physical constraints was not
sufficient to ensure that the solution remains well-behaved in the vicinity of discontinuities. The key mechanism for
stabilisation introduced by Dzanic and Witherden [14] was a forward-in-time local minimum entropy constraint of the
form

Γ3 (𝐮) = 𝜎 − 𝜎min, (18)
where 𝜎min is the discrete minimum entropy within the element and its Voronoi neighbours (see Dzanic and Witherden
[14], Section 3.2).

These constraints were enforced through an adaptive modal filter, where the solution was first decomposed into its
modal form as

𝐮(𝐱) =
∑

𝑖∈
�̂�𝑖𝜓𝑖(𝐱), (19)

for some set of modal basis functions 𝜓𝑖(𝐱) computed with respect to the unit measure and their associated modes �̂�𝑖.A filtered solution was then computed using a second-order exponential filtering kernel as
�̃�(𝐱) =

∑

𝑖∈
�̂�𝑖𝑒−𝜁𝑝

2
𝑖 𝜓𝑖(𝐱), (20)

where 𝜁 is the filter strength and 𝑝𝑖 is the maximal order of the basis function 𝜓𝑖(𝐱). This filtering operation can be
considered as a form of hierarchical slope limiting as discussed in Michoski et al. [31]. The filter strength was computed
adaptively through an element-wise scalar optimisation problem where the minimum necessary filter strength is sought
such that the filtered solution satisfies the constraints discretely, i.e.,

𝜁 = arg min
𝜁 ≥ 0

s.t.
[

Γ1
(

�̃�(𝐱𝑖)
)

> 0, Γ2
(

�̃�(𝐱𝑖)
)

> 0, Γ3
(

�̃�(𝐱𝑖)
)

> 0 ∀ 𝑖 ∈ 
]

. (21)

This optimisation problem can be readily solved using standard root-bracketing approaches, and due to the equivalency
of the element-wise mean of discontinuous Galerkin schemes to first-order Godunov methods, a solution to this
optimisation problem is guaranteed to exist given the previously mentioned assumptions on the numerical scheme
[10, 14, 46–48].

The extension of this approach to the multi-species system presents additional options for constraints on the
solution. First, the physical constraints on the positivity of the (mixture) density and pressure are retained, i.e.,

Γ1 (𝐮) = 𝜌 and Γ2 (𝐮) = 𝑃 . (22)
Then, further constraints are introduced for the positivity of the individual species densities as

Γ3 (𝐮) = 𝛼𝑖𝜌𝑖 (23)
for 0 ≤ 𝑖 ≤ 𝑛−1. Note that while from an analytical perspective, Γ1 (𝐮) is redundant given Γ3 (𝐮), it is advantageous to
separate these constraints numerically due to the inclusion of numerical tolerances. This separation is later discussed
in Section 4. Finally, a straightforward application of the entropy filter of Dzanic and Witherden [14] can be done by
including the entropy constraint as

Γ4 (𝐮) = 𝜎 − 𝜎min, (24)
where 𝜎 is defined by Eq. (10).
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However, as will be shown in the numerical experiments, the naive implementation of the entropy constraints
for compressible multi-species flows results in exceedingly deficient approximations, particularly around species
interfaces. This deficiency stems from the discontinuities introduced by species interfaces, where even flows with
smooth mixture density fields may consist of individually discontinuous species density fields which, by Eq. (9) and
Eq. (10), can cause numerically ill-behaved entropy fields. As a result, excessive numerical dissipation is introduced
in the vicinity of species interfaces which, much like contact discontinuities in single-species flows, do not need nearly
as much stabilisation as compressive features such as shocks.

A novelty of the proposed approach is the introduction of a method to modify these entropy constraints such that
they can adequately stabilise the solution in regions where it is necessary while retaining high accuracy around species
interfaces and contact discontinuities. To retain the benefits of the entropy filtering approach, this modification must
maintain its desirable properties, namely the efficiency, robustness, and lack of problem-dependent tunable parameters.
To this end, we propose a switch to the entropy bounds inspired by the work of Gao et al. [17], such that the constraint
can be expressed as

Γ4 (𝐮) =
{

𝜎 − 𝜎min, if 𝑆 ≥ 1,
0 else,

(25)

where 𝑆 is some element-wise switching function. The goal of this switching function is to be able to isolate regions
where the numerical scheme would exhibit numerical instabilities (i.e., shocks) such that the entropy constraints
are necessary to ensure a well-behaved solution while neglecting other discontinuous regions such as contact
discontinuities and species interfaces. Most importantly, this switching function should be able to achieve this in a
way such as to not require problem-dependent tunable parameters. We note here that regardless of the choice of 𝑆, the
physical constraints are always enforced, such that the positivity-preserving properties are independent of the switching
function and its purpose is purely to increase the accuracy of the numerical scheme around species interfaces.
3.2. Interface jump convergence sensor

The proposed approach relies on detecting discontinuities in the pressure field to isolate contact discontinuities and
species interfaces from shocks in the flow. While many methods exist for sensing discontinuities in the solution, they
typically rely on arbitrary tunable parameters or are difficult to extend to high-order DSEM on unstructured grids in
a robust and efficient manner. To this end, we choose to formulate the switching function similarly to the method of
Krivodonova et al. [28]which utilises the convergence properties of discontinuous Galerkin-type methods to isolate
discontinuities in the solution within elements. For DSEM, it is known that the magnitude of the jump in the solution
(or some derived quantity thereof) across an element interface is dependent on the regularity of the solution. If we
define the jump of some derived quantity of the solution 𝑄 across 𝜕Ω𝑖 as

𝐼𝑖 = ∫𝜕Ω𝑖

(

𝑄+
𝑖 −𝑄−

𝑖
)

d𝑠, (26)

then it is expected that 𝐼𝑖 is of at least (ℎ𝑝+1), where ℎ is some characteristic mesh length, if the solution is sufficiently
smooth in the vicinity of Ω𝑖. However, if the solution is discontinuous in the vicinity of Ω𝑖, then 𝐼𝑖 would typically be
of (ℎ) (or higher if the discontinuity is aligned with the element interface). By utilising the convergence properties
of the pressure field, the switching function can be defined as

𝑆𝑖 =

|

|

|

|

∫𝜕Ω𝑖
(

𝑃+
𝑗 − 𝑃−

𝑗

)

d𝑠
|

|

|

|

ℎ𝑝+1‖𝑃−
𝑗 ‖∞|𝜕Ω𝑖|

. (27)

With this formulation, the switching function can be evaluated and the entropy bounds can be appropriately modified
per Eq. (25) at the time of the filter application. We remark here that the threshold value of unity is not necessarily a strict
condition as some arbitrariness in this value exists. However, this value was chosen for consistency with the original
work of Krivodonova et al. [28], and, as will be shown, this choice yields a robust and accurate stabilisation approach
for a series of challenging numerical experiments. Furthermore, as previously mentioned, the positivity-preserving
properties of the scheme are independent of the choice of threshold value. The numerical procedure for evaluating the
switching function as well as the formulation for computing the characteristic mesh scale for general grids is presented
in Section 4.
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3.3. Operator splitting
As the proposed scheme is reliant on the well-posedness of a local minimum entropy principle, care must be taken

in its extension to the multi-species Navier–Stokes equations. While the single-species counterpart of the viscous
flow equations may satisfy a minimum entropy principle for a particular choice of entropy [39], it is not evident
whether this holds for the multi-species case with the given entropy functional nor whether the numerical scheme
would satisfy the minimum entropy principle on the element-wise mean in the presence of the viscous dissipation. To
use the proposed scheme for the Navier–Stokes equations, two options can be considered. One may simply enforce
entropy constraints on the full hyperbolic-parabolic system even with the possibility of there not existing a solution
to the element-wise optimisation problem. Note that this option does not negatively impact the positivity-preserving
properties and robustness of the scheme as any stable root-bracketing method would converge to the maximal filter
strength in the absence of a solution to the optimisation problem.

The alternative approach, which is considered in this work, is to split the hyperbolic (inviscid) and parabolic
(viscous) operators and selectively apply constraints as necessary. The semi-discrete form in Eq. (16) is represented in
terms of the inviscid and viscous flux as

𝜕𝑡𝐮 + 𝛁⋅
(

𝐅𝐼 (𝐮) + 𝐅𝑉 (𝐮)
)

= 0. (28)
For some arbitrary 𝑛 and time step Δ𝑡 > 0, an intermediate temporal update can be given as

𝐮𝑛+1 = 𝐮𝑛 − Δ𝑡𝛁⋅
(

𝐅𝐼 (𝐮𝑛)
)

, (29)
corresponding to an inviscid substep of the governing equations. If necessary, the boundary conditions must be
appropriately modified to ensure consistency with the governing equations (e.g., no slip wall boundary conditions must
be converted to slip wall boundary conditions). As this substep obeys the local discrete minimum entropy principle,
the adaptive filtering operation𝐻(𝐮) can be applied as usual to stabilise the solution where necessary. Afterwards, the
full temporal update can be performed by adding the viscous component of the divergence of the flux as

𝐮𝑛+1 = 𝐻(𝐮𝑛+1) − Δ𝑡𝛁⋅
(

𝐅𝑉 (𝐮𝑛)
)

. (30)
Note that the viscous flux is evaluated in an explicit manner, not through a Strang splitting-type approach, such that the
accuracy of the temporal integration method is not detrimentally affected. While the addition of the viscous component
typically further stabilises the solution, it is possible in rare scenarios that positivity of density and pressure may not
be ensured for 𝐮𝑛+1 even though it is for 𝐻(𝐮𝑛+1). Therefore, a secondary filtering operation is applied to the 𝐮𝑛+1
using only positivity constraints to guarantee that the solution remains positivity-preserving. As the violation of the
positivity constraints caused by the additional viscous components is very rare [14], in the vast majority of situations,
the secondary filtering operation is not performed.

The operator splitting approach is presented in terms of a single step of a forward Euler scheme. The approach
can naturally be extended to any explicit SSP temporal integration method in a similar manner. For extensions to
higher-order SSP schemes as well as a detailed overview of the operator splitting approach, the reader is referred to
Dzanic and Witherden [14], Appendix A and Dzanic and Witherden [15], Section 3.2.

4. Implementation
The proposed numerical scheme was implemented within PyFR [45], a high-order flux reconstruction solver that

can be efficiently deployed on massively-parallel GPU and CPU computing architectures. For a given polynomial
approximation order 𝑝, the solution and flux points were distributed along the corresponding Gauss–Legendre–Lobatto
quadrature points for tensor-product elements and 𝛼-optimised [22] points for simplex elements. Temporal integration
was performed using a third-order, three stage SSP Runge–Kutta scheme with a fixed time step. The common inviscid
interface fluxes were computed using the HLLC Riemann solver [4, 43] as it was found to yield notably better results
than approaches such as that of Rusanov [36]. For the common viscous interface fluxes, the BR2 approach of Bassi
and Rebay [7] was used.

To ensure a non-vacuum state for the Riemann solver, a numerical tolerance 𝜖 was added to the mixture density
and pressure constraints, i.e.,

Γ1(𝐮) = 𝜌 − 𝜖, Γ2(𝐮) = 𝑃 − 𝜖. (31)
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Furthermore, the same tolerance was applied to the entropy constraints as
Γ4(𝐮) = 𝜎 − 𝜎min + 𝜖. (32)

Unless otherwise stated, this tolerance was set as 𝜖 = 10−5 in this work. For the constraint on the individual species
density, the tolerance was not applied through the constraints themselves but instead through adding 𝜖 to the initial
conditions for each species density component.

Due to the logarithmic nature of Eq. (10), the calculation of the entropy is highly prone to numerical precision
issues as well as numerically undefined behaviour in the limit of zero species density. The robustness and accuracy of
the proposed approach was significantly improved through the use of the modified entropy functional 𝜎∗, defined as

𝜎∗ = exp

[𝑛−1
∑

𝑖=0
𝑐𝑣,𝑖𝛼𝑖𝜌𝑖 log

(

max(𝜖, 𝛼𝑖𝜌𝑖)1−𝛾𝑖𝑇
)

]

, (33)

which was used for computing the entropy constraints in place of Eq. (10). As the exponential function is strictly
convex, this modified entropy retains the local minimum entropy principle of its original form, and the clipping of the
species density ensures that the entropy is numerically well-defined.

Unless otherwise stated, the numerical experiments are assumed to be computed with the entropy switch enabled.
The sensor for the entropy switch, defined by Eq. (27), was computed discretely across the nodal interface points for
each element Ω𝑖 as

𝑆𝑖 =
∑

𝑗∈ 𝑤𝑗(𝑃
+
𝑗 − 𝑃−

𝑗 )

ℎ𝑝+1
(

max𝑗∈ |𝑃−
𝑗 |

) (

∑

𝑗∈ 𝑤𝑗
) , (34)

where 𝑤𝑗 is the corresponding quadrature weight for the given interface point 𝐱𝑗 on 𝜕Ω𝑖. The formulation of the
mesh scale ℎ was chosen in such a way to easily generalise between unstructured and structured meshes of varying
dimensionality. We define the mesh scale as the diameter of the 𝑑-ball of equivalent surface area to the element in
question, i.e.,

ℎ =

{

𝐴∕𝜋, if 𝑑 = 2,
√

𝐴∕𝜋, if 𝑑 = 3,
(35)

where 𝐴 =
∑

𝑗∈ 𝑤𝑗 is the surface area of 𝜕Ω𝑖. While other approaches exist for computing a mesh scale for an
unstructured mesh (e.g., inscribed circle/sphere), it was found that the results were not particularly sensitive to how
the mesh scale was computed.

For the adaptive filtering method, the constraints were first checked each time the filtering operation was called, and
if the solution satisfied the constraints, no filtering was applied. In the case that the solution violated the constraints, the
filter strength was computed using the Illinois root-bracketing approach [11] with a maximum of 20 iterations and an
early stopping tolerance of 10−8. A highly-efficient optimisation procedure was utilised which exploits the structured
nature of the filtering matrices (see Dzanic and Witherden [15], Section 4.1), such that the overall cost of the adaptive
filtering method was only a small portion of the total compute time. This approach was implemented and deployed on
parallel GPU computing architectures with computations performed on up to 40 NVIDIA V100 GPUs. Further details
of the configurations used throughout this work can be found in the electronic supplementary material.

5. Results
5.1. Multi-species Euler equations
5.1.1. Near-vacuum convecting density wave

As an initial verification of the ability of the proposed approach to recover the high-order accuracy of the underlying
DSEM for smooth problems, the convergence of the scheme was evaluated for a smooth convecting density wave. This
problem is evaluated on the periodic domain Ω = [−0.5, 0.5] × [−0.05, 0.05], and the initial conditions are given as

𝜌 = 𝛼0𝜌0 + 𝛼1𝜌1 = exp
(

−𝜎𝑥2
)

+ 4𝜖, (36a)
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Table 1
Convergence in the 𝐿∞ norm of the density error at 𝑡 = 1 with respect to mesh resolution 𝑁 for the near vacuum convection
problem with varying approximation order and with the entropy switch. Rate of convergence shown beneath.

𝑁 ℙ1 ℙ2 ℙ3 ℙ4 ℙ5

8 - - 5.32 × 10−1 5.20 × 10−1 5.31 × 10−1
16 - 3.07 × 10−1 6.94 × 10−2 4.54 × 10−2 2.14 × 10−1
32 3.16 × 10−1 3.36 × 10−2 1.1 × 10−2 3.82 × 10−4 7.70 × 10−4
64 1.04 × 10−1 2.85 × 10−3 1.91 × 10−4 1.12 × 10−5 8.05 × 10−7
128 2.21 × 10−2 3.53 × 10−4 1.33 × 10−5 5.41 × 10−7 -
256 3.68 × 10−3 4.35 × 10−5 1.06 × 10−6 - -
512 6.26 × 10−4 5.47 × 10−6 - - -

RoC 2.28 3.16 3.93 5.17 6.61

𝛼0 = 1 − 𝛼1 =
1
2
(sin (2𝜋𝑥) + 1), (36b)

𝑢 = 1, (36c)
𝑣 = 0, (36d)
𝑃 = 2𝜖, (36e)

where 𝜎 = 500 is the strength of the Gaussian wave. We consider the case of two-species, where the specific heat
capacities were set as 𝑐𝑝,0 = 1.4, 𝑐𝑣,0 = 1, 𝑐𝑝,1 = 4.21, and 𝑐𝑣,1 = 2.52. To make this problem more challenging and
to test the robustness of the positivity-preserving properties of the proposed scheme, a near-vacuum state was used
for the initial conditions by setting 𝜖 = 10−12, such that each species density had a minimum value of 2⋅10−12. The
tolerances and minimum density/pressure conditions for the scheme were also modified accordingly. For these extreme
conditions, numerical undershoots can easily cause negative density and pressure states which can cause a solver to
diverge if it does not explicitly enforce positivity.

To evaluate the behaviour of the scheme at smooth extrema, the 𝐿∞ norm of the density error was calculated
after one flow-through of the domain. The error and the average rate of convergence for varying approximation orders
and mesh resolution is shown in Table 1. It can be seen that the high-order accuracy of DSEM was not detrimentally
affected by the proposed stabilisation method, such that high-order (i.e., 𝑝 + 1) convergence was observed even at
smooth extrema. However, it may be argued that the observed high-order accuracy for the given problem could be a by-
product of the entropy switch as the constant pressure field would not trigger the entropy constraints (i.e., 𝑆 ∼ 0) which
are primarily responsible for stabilisation in the vicinity of discontinuities. To verify that the stabilisation technique
recovers high-order accuracy even with entropy constraints, the convergence tests were repeated with the entropy
switch disabled, such that the entropy constraints were always enforced for every element in the domain. The error and
convergence rates with the entropy switch disabled are presented in Table 2. It can clearly be seen that the resulting
errors and, by extension, convergence rates, are nearly identical with and without the entropy switch. These results
indicate that the proposed stabilisation approach retains the high-order accuracy of the underlying DSEM in smooth
regions of the flow while ensuring that physical constraints such as positivity of density and pressure are satisfied by
the discrete solution.
5.1.2. Isentropic Euler vortex

The convecting Euler vortex [38] is an isentropic solution to the Euler equations with an analytic expression for
its time evolution. Consequently, it is frequently used as a validation case for numerical solvers. For the extension to
multi-species flows, the initial conditions can be adapted as

𝜌𝑖 =
(

1 −
(𝛾𝑖 − 1)𝛽2𝑀2

8𝜋2
exp(2𝑓 )

)1∕(𝛾𝑖−1)

, for 𝑖 ∈ {1, 2}, (37a)

𝑢 = 𝑈0 +
𝛽𝑦
2𝜋𝑅

exp(𝑓 ), (37b)
𝑣 = 𝑉0 −

𝛽𝑥
2𝜋𝑅

exp(𝑓 ), (37c)

W. Trojak et al.: Preprint submitted to Elsevier Page 9 of 22



Positivity-preserving discontinuous spectral element methods for compressible multi-species flows

Table 2
Convergence in the 𝐿∞ norm of the density error at 𝑡 = 1 with respect to mesh resolution 𝑁 for the near vacuum convection
problem with varying approximation order and without the entropy switch. Rate of convergence shown beneath.

𝑁 ℙ1 ℙ2 ℙ3 ℙ4 ℙ5

8 - - 5.32 × 10−1 5.20 × 10−1 5.31 × 10−1
16 - 3.07 × 10−1 6.94 × 10−2 4.54 × 10−2 2.14 × 10−1
32 3.16 × 10−1 3.37 × 10−2 1.1 × 10−2 3.83 × 10−4 7.70 × 10−4
64 1.04 × 10−1 2.85 × 10−3 1.91 × 10−4 1.11 × 10−5 1.11 × 10−6
128 2.21 × 10−2 3.53 × 10−4 1.32 × 10−5 4.62 × 10−7 -
256 3.68 × 10−3 4.35 × 10−5 1.1 × 10−6 - -
512 6.26 × 10−4 5.46 × 10−6 - - -

RoC 2.28 3.16 3.93 5.22 6.47

𝑃 = 1
𝛾𝑀2 𝜌

𝛾 , (37d)

𝛼1 =
1
2
sin

( 𝜋
𝐿
(𝑦 − 𝑦0)

)

+ 1
2
, (37e)

𝑓 =
1 − (𝑥 − 𝑥0)2 − (𝑦 − 𝑦0)2

2𝑅2 , (37f)

defined on the domain Ω = [𝑥0−𝐿, 𝑥0+𝐿]×[𝑦0−𝐿, 𝑦0+𝐿]. Here, the parameters 𝛽 = 13.5 denote the strength of the
vortex, 𝑅 = 1.5 the radius, 𝑈0 = 0, 𝑉0 = 1 the advection velocities, and 𝑀 = 0.4 the free-stream Mach number. The
domain was centred around 𝑥0 = 𝑦0 = 0 with an extent of 𝐿 = 10. In the multi-species case, forming an exact solution
at an arbitrary time is complex. Therefore, we instead use a different procedure to inspect the efficacy of the proposed
approach. First, the solution is advanced to some time 𝑡 = 𝑇 , after which the flow velocities are reversed and then
advanced to 𝑡 = 2𝑇 . If the initial condition is isentropic, then the solution should be reversible and any irreversibilities
stemming from numerical error and dissipation would appear as discrepancies between the solutions at 𝑡 = 0 and
𝑡 = 2𝑇 . To yield this isentropic initial condition, we consider the two-species case with 𝛾0 = 𝛾1, recovered through the
specific heat capacities 𝑐𝑝,0 = 1.4, 𝑐𝑣,0 = 1, 𝑐𝑝,1 = 2.8, and 𝑐𝑣,1 = 2.

The contours of the first species density at 𝑡 = 𝑇 = 20, computed by a ℙ4 approximation with varying mesh
resolution, are shown in Fig. 1 with and without the entropy switch. It can evidently be seen that there is a marked
difference in the accuracy of the method when the entropy switch is used that is most pronounced in the vicinity of
species interfaces. With the switch enabled, very good resolution of the vortex rollup was observed even at 𝑁 = 402,
showing, at least in the qualitative sense, mesh convergence with respect to the more resolved case of 𝑁 = 802.
However, when the entropy switch was disabled, the enforcement of entropy constraints around species interfaces had
a severely detrimental effect on the accuracy of the proposed method, with poor convergence with respect to mesh
resolution.

After flow reversal at 𝑡 = 2𝑇 , shown in Fig. 2, the difference between the accuracy of the method with and without
the entropy switch became even more pronounced. While the approach with the entropy switch was able to recover the
initial conditions reasonably well with𝑁 = 402 and very well with𝑁 = 802, the approach without the entropy switch
showed noticeable numerical artefacts at all resolutions as a result of the excessive numerical dissipation introduced
by the entropy constraints at species interfaces. As a result, the predictions at 𝑁 = 802 without the entropy switch
were on the order of the much less resolved𝑁 = 202 simulation that did utilise the entropy switch. These observations
are highlighted in Fig. 3 which shows a cross-section of the first species density at 𝑥 = 0 at both the flow reversal time
and final time computed with the entropy switch. It can be seen that the approach can resolve the highly-oscillatory
nature of the vortex rollup and recover the initial conditions very well. Furthermore, a comparison of the results with
and without the entropy switch is shown on the same cross-section in Fig. 4. The substandard resolving ability for the
vortex rollup and the flow irreversibilities introduced by the significant numerical dissipation of the approach without
the entropy switch can be clearly observed. These results showcase both the resolving ability of the scheme and the
importance of adapting the entropy bounds by the proposed approach.
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(a) 𝑁 = 202 (with entropy switch) (b) 𝑁 = 402 (with entropy switch) (c) 𝑁 = 802 (with entropy switch)

(d) 𝑁 = 202 (without entropy switch) (e) 𝑁 = 402 (without entropy switch) (f) 𝑁 = 802 (without entropy switch)
Figure 1: Contours of 𝛼0𝜌0 for the multi-species isentropic Euler vortex problem at 𝑡 = 𝑇 = 20 using a ℙ4 approximation
with 𝑁 = 202 (left), 402 (middle), and 802 (right) elements. Results with and without the entropy switch shown on top
and bottom rows, respectively.

Table 3
Initial conditions for the Quirk and Karni shock tube problem.

Region Extent 𝜌0 𝜌1 𝑢 𝑃 𝛾 𝑐𝑣
L 𝑥 ≤ 0.25 1.3765 0 0.3948 1.57 1.4 0.72
R 0.25 < 𝑥 ≤ 0.4, 𝑥 > 0.6 1 0 0 1 1.4 0.72
B 0.4 < 𝑥 ≤ 0.6 0 0.138 0 1 1.67 2.52

5.1.3. Quirk and Karni shock tube
To evaluate the proposed scheme for more complex flow physics including shock waves, contact discontinuities,

and rarefaction waves, the one-dimensional shock tube problem of Quirk and Karni [33], a simplification of a shock-
bubble interaction, was considered. In this test case, the various features of the Riemann problem are observed
as well as discontinuities between species, which can introduce pressure oscillations in conservative approaches
where pressure equilibrium is not guaranteed. The problem is solved in a quasi-one-dimensional form on the domain
Ω = [0, 1] × [−0.05, 0.05], and the initial conditions are given by Table 3.

For this experiment, a ℙ3 approximation was used with varying mesh resolution. The resulting density and pressure
fields at 𝑡 = 0.35 are shown in Fig. 5. A reference solution was computed with a highly resolved, first-order Godunov
[18] scheme with 𝑁 = 5⋅104 elements. It can be seen that the proposed approach shows good convergence to
the reference solution with increasing mesh resolution, with excellent agreement at 𝑁 = 200. Furthermore, better
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(a) 𝑁 = 202 (with entropy switch) (b) 𝑁 = 402 (with entropy switch) (c) 𝑁 = 802 (with entropy switch)

(d) 𝑁 = 202 (without entropy switch) (e) 𝑁 = 402 (without entropy switch) (f) 𝑁 = 802 (without entropy switch)
Figure 2: Contours of 𝛼0𝜌0 for the multi-species isentropic Euler vortex problem after flow reversal at 𝑡 = 2𝑇 = 40 using
a ℙ4 approximation with 𝑁 = 202 (left), 402 (middle), and 802 (right) elements. Results with and without the entropy
switch shown on top and bottom rows, respectively.
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Figure 3: Cross-section of 𝛼0𝜌0 at 𝑥 = 0 for the multi-species isentropic Euler vortex problem at 𝑡 = 𝑇 = 20 (left) and after
flow reversal at 𝑡 = 2𝑇 = 40 (right) using a ℙ4 approximation with varying mesh resolution computed with the entropy
switch. Initial 𝛼0𝜌0 field at 𝑡 = 0 shown by grey markers.
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(a) 𝑡 = 20
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Figure 4: Comparison of the cross-section of 𝛼0𝜌0 at 𝑥 = 0 for the multi-species isentropic Euler vortex problem at
𝑡 = 𝑇 = 20 (left) and after flow reversal at 𝑡 = 2𝑇 = 40 (right) using a ℙ4 approximation with 𝑁 = 802 computed with the
entropy switch (red) and without the entropy switch (black). Initial 𝛼0𝜌0 field at 𝑡 = 0 shown by grey markers.

prediction of discontinuities in the flow was observed with increasing resolution, with less numerical dissipation
introduced by scheme. In the pressure field, the oscillations associated with the pressure equilibrium problem [2],
commonly seen in conservative approaches in the region 0.4 < 𝑥 < 0.7, were not visually noticeable. It is expected that
these oscillations reduce with increasing mesh resolution [2, 26], such that their effects are minimal for well-resolved
simulations.
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(a) Density
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1.2

1.4
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𝑥

𝑃

(b) Pressure
Figure 5: Profiles of density (left) and pressure (right) for the Quirk and Karni shock tube problem at 𝑡 = 0.35 computed
using a ℙ3 approximation with varying mesh resolution.

5.1.4. Helium-air shock-bubble interaction
The extension to more complex flow physics and unstructured meshes was performed through the helium-air

shock-bubble interaction problem, a well-studied case first experimentally investigated by Haas and Sturtevant [21] and
numerically simulated by Quirk and Karni [33]. The interaction between the travelling shock wave and the helium gas
bubble seeds Richtmyer–Meshkov instabilities at the interface, yielding complex vortical flow. Accurately predicting
this interaction is the primary challenge in this test case as stabilisation methods with excessive numerical dissipation
tend to smear the interface and associated small-scale flow features.
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Figure 6: Schematic of the domain and initial conditions for the helium-air shock-bubble interaction problem.

Table 4
Initial conditions for the helium-air shock-bubble interaction problem.

Region 𝜌0 𝜌1 𝑢 𝑣 𝑃 𝛾 𝑐𝑣
L 1 0 0 0 1 1.3986 0.72
R 1.37636 0 -0.55957 0 1.5698 1.3986 0.72
B 0 0.18187 0 0 1 1.6467 2.44

The numerical setup consists of a bubble of radius𝑅 = 5∕89 filled with helium contaminated with 28% air by mass.
This bubble is centred at 𝑥 = 0.8, 𝑦 = 0 within a channel of unit length and height of 0.2 filled with air. The resulting
numerical domain is set as Ω = [0, 1] × [−0.1, 0.1], shown in Fig. 6. At 𝑥 = 0.9, a normal shock corresponding to a
Mach number of𝑀 = 1.22 is imposed. The flow is normalised to unit density and pressure by the post-shock air state,
denoted by the subscript 𝑙. The pre-shock air state, denoted by the subscript 𝑟, is computed via the Rankine–Hugoniot
conditions. The bubble state, denoted with the subscript 𝑏, is set to be in thermal and mechanical equilibrium with
the surrounding air. The initial conditions as well as the necessary gas constants for the three states are presented in
Table 4.

(a) Coarse mesh (ℎ∕𝑅 = 50) (b) Medium mesh (ℎ∕𝑅 = 100) (c) Fine mesh (ℎ∕𝑅 = 200)
Figure 7: Numerical Schlieren diagrams for the helium-air shock-bubble interaction at 𝑡 = 0.25 computed on a coarse (left),
medium (middle), and fine (right) unstructured triangular mesh with a ℙ3 approximation. Solution on the half-domain is
reflected across the 𝑥-axis for visualisation.

The problem was solved using a ℙ3 approximation on unstructured meshes. Due to the symmetry of the problem,
only half of the domain (𝑦 > 0) was solved for, with symmetry (slip adiabatic wall) boundary conditions imposed along
the lower wall. Similarly, slip adiabatic wall boundary conditions were used for the upper wall. Dirichlet boundary
conditions were used for the inlet (𝑥 = 1) and Neumann boundary conditions for the outlet (𝑥 = 0). A series of
unstructured triangular meshes were generated, with the coarse, medium, and fine meshes corresponding to average
edge lengths of ℎ∕𝑅 = 50, 100, and 200, respectively. The resulting numerical Schlieren diagrams at 𝑡 = 0.25, showing
the magnitude of the density gradient, are shown in Fig. 7 for the various mesh resolutions. The rollup of vortices along
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(a) Coarse mesh (ℎ∕𝑅 = 50) (b) Medium mesh (ℎ∕𝑅 = 100) (c) Fine mesh (ℎ∕𝑅 = 200)
Figure 8: Numerical Schlieren diagrams for the helium-air shock-bubble interaction at 𝑡 = 0.39 computed on a coarse (left),
medium (middle), and fine (right) unstructured triangular mesh with a ℙ3 approximation. Solution on the half-domain is
reflected across the 𝑥-axis for visualisation.

the bubble interface were clearly observed, with smaller scale flow features appearing with increasing resolution. At
a later time of 𝑡 = 0.39, shown in Fig. 8, the bubble showed more lateral spread and distinct vortical structures, and
similar observations with respect to the mesh resolution were drawn.

(a) 𝑡 = 0.25 (426 𝜇s) (b) 𝑡 = 0.39 (674 𝜇s)
Figure 9: Comparison of the numerical Schlieren diagrams for the helium-air shock-bubble interaction between the present
work (top) and Kundu [29] (bottom) at 𝑡 = 0.25 (left) and 𝑡 = 0.39 (right). Corresponding simulation time of Kundu [29]
shown in parentheses.

A comparison of the proposed approach on the fine mesh and the results of Kundu [29], computed with a ninth-
order upwind finite difference scheme, is shown in Fig. 9 at the two simulation times. Between the two methods, the
effective mesh resolution in terms of solution point spacing was roughly similar. Very good agreement between the
two approaches was observed, with near identical predictions of the dominant flow structures in the problem as well
as good agreement in the shape and size of the small-scale flow features.
5.1.5. Triple-point shock interaction

As a final inviscid test case, the triple-point shock interaction problem of Galera et al. [16] was used to evaluate
the method for complex shock-vortex interactions. The problem consists of a two-dimensional, two-species Riemann
problem, with an overpressure state driving the rollup of a contact discontinuity between species. The domain is set as
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Ω = [0, 7] × [0, 3] with slip adiabatic walls on all four sides, and the initial conditions for the three states are shown
in Fig. 10. The initial velocity is set to zero throughout the domain. To achieve the desired specific heat ratios of
𝛾0 = 𝛾𝑙 = 𝛾𝑡 = 1.5 and 𝛾1 = 𝛾𝑏 = 1.4, we simply set 𝑐𝑣,0 = 𝑐𝑣,1 = 1 and 𝑐𝑝 = 𝛾 , respectively.

𝑥

𝑦

0 1 7

0

1.5

3

𝜌𝑙 = 1
𝑃𝑙 = 1
𝛾𝑙 = 1.5

𝜌𝑡 = 0.125
𝑃𝑡 = 0.1
𝛾𝑡 = 1.5

𝜌𝑏 = 1
𝑃𝑏 = 0.1
𝛾𝑏 = 1.4

Figure 10: Schematic of the domain and initial conditions for the triple-point shock interaction problem.

The problem was solved using a ℙ3 approximation on a uniform quadrilateral mesh with 𝑁 = 2800 × 1200
elements. The contours of mixture density at evenly-spaced time intervals are shown in Fig. 11. It can be seen that
the rollup of the contact discontinuity introduces Kelvin–Helmholtz instabilities in the flow which were well-resolved
by the proposed scheme. The interaction of these vortical structures with the reflecting shock waves in the domain
showcases the ability of the scheme to stabilise the solution around discontinuities without excessively dissipating
small-scale flow structures. These results compare favourably to works such as that of Kolev and Rieben [27] in terms
of the resolving capability of small-scale flow structures.
5.2. Multi-species Navier–Stokes equations
5.2.1. Rayleigh–Taylor instability

The extension to the multi-species viscous flow equations was performed through simulations of the Rayleigh–
Taylor instability, a fundamental phenomenon stemming from the interaction of fluids of different densities in
hydrostatic equilibrium. The problem consists of a denser fluid resting above a lighter fluid, with gravitational forces
initially balanced by an equivalent pressure gradient. The interface between the fluids forms instabilities manifesting
as “fingers” of heavy fluid descending in conjunction with “pillars” of lighter fluid ascending, driving the flow into a
chaotic mixing state.

The problem is solved on the domain Ω = [−0.5, 0.5]2 × [−1, 1]. The fluid interface was placed at 𝑧 = 0, with
𝛼0𝜌0 = 𝜌𝑏, 𝛼1𝜌1 = 0 for 𝑧 ≤ 0 and 𝛼0𝜌0 = 0, 𝛼1𝜌1 = 𝜌𝑡 for 𝑧 > 0. The densities of the light and heavy fluid were
taken as 𝜌𝑏 = 1 and 𝜌𝑡 = 3, respectively, yielding an Atwood number of 1∕2. The fluid was taken to be at rest in the
transverse directions, i.e., 𝑢 = 𝑣 = 0, and a small vertical velocity perturbation was imposed to seed instabilities in the
flow. A deterministic single-mode sinusoidal perturbation was used with a cosinusoidal vertical decay as

𝑤 = 𝐴 cos
( 𝜋𝑧
2𝐿

)

sin
(4𝜋𝑥
𝐿

)

sin
(

4𝜋𝑦
𝐿

)

, (38)

where the amplitude of the perturbation was taken as𝐴 = 0.05. Constant source terms of −𝜌𝑔 and −𝜌𝑔𝑤, where 𝑔 = 1,
in the vertical momentum and energy equations, respectively, were used to simulate a gravitational field effect. The
initial pressure field was chosen to enforce hydrostatic equilibrium in the flow with respect to the gravitational field,
i.e.,

𝑃 = 𝑃0 − 𝜌𝑔𝑧. (39)
The ambient pressure was set as 𝑃0 = 6.

A uniform hexahedral mesh with𝑁 = 32×32×64 elements was used with periodicity enforced along the transverse
directions, and a slip adiabatic wall boundary condition was applied to the top and bottom walls. The specific heat
constants for the lighter and heavier fluids were taken as 𝑐𝑣,0 = 3.11, 𝑐𝑝,0 = 5.19, 𝑐𝑣,1 = 0.72, and 𝑐𝑝,1 = 1.007. A
uniform Prandtl number and dynamic viscosity were used, with the Prandtl number fixed at 𝑃𝑟 = 0.71 and the dynamic
viscosity fixed at 𝜇 = 1⋅10−4, 5⋅10−5, and 1⋅10−5 for the varying simulations.
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(a) 𝑡 = 1 (b) 𝑡 = 4

(c) 𝑡 = 2 (d) 𝑡 = 5

(e) 𝑡 = 3 (f) 𝑡 = 6

Figure 11: Contours of density for the triple-point shock interaction problem at varying times computed using a ℙ3
approximation on a 𝑁 = 2800 × 1200 structured quadrilateral mesh.
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𝜇 = 1⋅10−4

𝜇 = 5⋅10−5

𝜇 = 1⋅10−5

Figure 12: Volume-averaged kinetic energy for the Rayleigh–Taylor instability problem computed using a ℙ3 approximation
on a 𝑁 = 32 × 32 × 64 structured hexahedral mesh with varying values of the dynamic viscosity.
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The problem was solved using a ℙ3 approximation on the given mesh over the time range 𝑡 ∈ [0, 5]. The quantity
of comparison for the flow was the volume-averaged kinetic energy, computed as

𝑘 = 1
2
𝜌𝐕⋅𝐕. (40)

A comparison of the kinetic energy profiles with respect to time for the varying values of the dynamic viscosity is
shown in Fig. 12. The instabilities driven by the gravitational field introduce kinetic energy into the initially static
flow field. This forcing is eventually balanced by the viscous dissipation of the turbulent mixing state at 𝑡 ≈ 4.5, after
which viscosity overcomes and starts driving down the kinetic energy of the system. It can be seen that with decreasing
values of the dynamic viscosity, the kinetic energy peak in the flow increases. Given the identical mesh used for the
simulations, this indicates that the dissipation in the flow is primarily introduced through the physical viscosity, not the
numerical stabilisation approach, which indicates that the proposed method may be a promising approach for accurately
simulating complex multi-species turbulent flows.

(a) 𝑡 = 2 (b) 𝑡 = 3 (c) 𝑡 = 4 (d) 𝑡 = 5

Figure 13: Volume rendering of the density field for the Rayleigh–Taylor instability problem at varying times computed
using a ℙ3 approximation on a 𝑁 = 32 × 32 × 64 structured hexahedral mesh with 𝜇 = 1⋅10−5.

A visualisation of the flow through a volume rendering of the density field is also shown in Fig. 13 for the case of
𝜇 = 1⋅10−5. The canonical flow structures of the descending “fingers” and ascending “pillars” of the Rayleigh–Taylor
instability can be clearly seen in the early stages of the flow. The breakdown of these flow structures can then be
observed at 𝑡 = 4, after which a chaotic turbulent mixing state develops at 𝑡 = 5. Eventually, the viscous dissipation in
the system is expected to gradually bring the flow to a rest over longer simulation times.
5.2.2. Taylor–Green vortex

The final evaluation of the proposed method was performed on the Taylor–Green vortex, a canonical fluid dynamics
problem for studying vortex dynamics and turbulent transition and decay. The problem consists of a laminar initial flow
field which transitions to turbulence at Reynolds numbers of approximately 500 and above, which makes it an ideal
case for evaluating the effects of the proposed scheme on predicting small-scale turbulent flow structures, particularly
with respect to the numerical dissipation introduced by the scheme to stabilise the solution around species interfaces.
To comprehensively study this, we consider the case of a two-species flow with identical specific heat constants and
transport coefficients for both species which should, in theory, exhibit identical flow features to the single-species case.
The resulting differences between the two cases can then be attributed to effects of the proposed numerical stabilisation
method.

For this problem, the domain is taken as Ω = [0, 2𝜋]3, and the initial conditions are defined as
𝜌 = 1, (41a)
𝑢 = sin 𝑥 cos 𝑦 cos 𝑧, (41b)
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Table 5
Overview of the various problem setups for the Taylor–Green vortex.

Test Species (𝑛) 𝛼0 𝑁

A-coarse 1 1 323
A-fine 1 1 403
B-coarse 2 Eq. (42) 323
B-fine 2 Eq. (42) 403
C-coarse 2 Eq. (43) 323
C-fine 2 Eq. (43) 403

𝑣 = −cos 𝑥 sin 𝑦 cos 𝑧, (41c)
𝑤 = 0, (41d)
𝑃 = 𝑃0 +

1
16

(cos (2𝑥) + cos (2𝑦)) (cos (2𝑧 + 2)), (41e)

where the ambient pressure was set as 𝑃0 = 1∕(𝛾𝑀2) for a specific heat ratio of 𝛾 = 1.4 and a Mach number of
𝑀 = 0.08. The specific heat capacities of both fluid were set as 𝑐𝑝 = 1.005 and 𝑐𝑣 = 0.718. The Reynolds number and
Prandtl number were set as 𝑅𝑒 = 1600 and 𝑃𝑟 = 0.71, respectively. At these operating conditions, the Taylor–Green
vortex is an extensively studied case [9].

Three variations of the problem were considered. The first variation, denoted by the label𝐴, consists of the standard
single-species description of the problem, where 𝜌 = 𝜌0. The second variation, denoted by the label 𝐵, consists of a
two-species flow with an initially smooth species interface, given as

𝛼0 =
1
2
+ 1

16
(cos (𝑥) + 1)(cos (𝑦) + 1)(cos (𝑧) + 1). (42)

The third variation, denoted by the label 𝐶 , consists of a two-species flow with an initially sharp species interface,
given as

𝛼0 =
1
2
+ 1

4
tanh

(

𝛽(𝑥 − 𝜋)
)

tanh
(

𝛽(𝑦 − 𝜋)
)

tanh
(

𝛽(𝑧 − 𝜋)
)

, (43)

where 𝛽 = 1000. For each variation of the problem, both a coarse mesh, consisting of 𝑁 = 323 elements, and a fine
mesh, consisting of𝑁 = 403 elements, were considered. An overview of these problem setups is presented in Table 5.

The metric of interest in the flow was the dissipation rate measured by the enstrophy, defined as

𝜀 = 2𝜇
(2𝜋)3 ∫Ω

1
2
𝜌(𝜔𝜔𝜔 ⋅𝜔𝜔𝜔) d𝐱, (44)

where𝜔𝜔𝜔 = 𝛁×𝐕 is the vorticity. For incompressible flows, this quantity is equal to the kinetic energy dissipation rate,
but for compressible flows, it differs from the kinetic energy dissipation rate by the contribution of the deviatoric strain
and pressure dilatation to the dissipation. As this functional is based on the vorticity in the flow field, an underprediction
in the enstrophy indicates that the generation of small-scale flow features has been suppressed by numerical dissipation.
The problem was solved using a ℙ3 approximation, and the dissipation measured by enstrophy for the various problem
setups on the coarse and fine mesh is presented in Fig. 14 in comparison to the direct numerical simulation (DNS)
results of van Rees et al. [34] (as presented in Hillewaert [23]). It can be seen that the single-species results (𝐴) show
relatively good agreement with the DNS results in terms of enstrophy for the coarse mesh and show convergence
with increasing resolution. When the flow field was described using a two-species approach (𝐵 and 𝐶), the measured
enstrophy was slightly underpredicted with respect to the single-species approach. However, it was observed that these
differences diminished with increasing resolution, with the case of the initially sharp interface (𝐶) showing relatively
good agreement with the single-species case. Notably, the case of the initially smooth interface (𝐵) underpredicted the
enstrophy in the flow more than the initially sharp interface, indicating that more numerical dissipation was introduced
for a smoothly varying interface than a sharp interface. While this may seem counter-intuitive at first as it is expected
that the numerical dissipation introduced by the proposed approach is primarily for the purpose of stabilising the
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Figure 14: Dissipation measured by enstrophy for the Taylor–Green vortex computed using a ℙ3 approximation on a
𝑁 = 323 (left) and 𝑁 = 403 (right) structured hexahedral mesh. Results shown for problem setups with single-species
(black, dashed), multi-species with smooth phase boundaries (black, solid), and multi-species with sharp phase boundaries
(red, solid). DNS results of van Rees et al. [34] (as presented in Hillewaert [23]

) shown for reference.

scheme in the vicinity of discontinuities, these observations may be linked to aliasing errors associated with the
nonlinear description of the interface. It has been shown that the enforcement of entropy constraints tends to mitigate
aliasing errors [13] through the addition of a suitable amount of numerical dissipation, which may explain the observed
underprediction of the enstrophy. Regardless, the results indicate that the proposed approach can accurately resolve
complex flow phenomena such as transition to turbulence for multi-species flows to a similar degree of accuracy that
can be obtained by high-order DSEM for single-species flows.

6. Conclusions
In this work, we present a novel positivity-preserving numerical stabilisation approach for the conservative com-

pressible multi-species flow equations solved via high-order discontinuous spectral element methods. The stabilisation
method uses the adaptive nonlinear filtering approach of Dzanic and Witherden [14], with constraints applied to species
density, total density, and pressure. It was found that the entropy constraints proposed in Dzanic and Witherden [14]
led to excessive dissipation around species interfaces, substantially degrading the accuracy of the underlying high-
order scheme. An improved stabilisation framework was proposed in this work where the entropy component of the
constraints was adaptively enabled or disabled based on the presence of discontinuities in the pressure field, detected
using a sensor which utilises the convergence properties of high-order DSEM. The efficacy of the proposed method
was demonstrated in numerical experiments on the multi-species Euler and Navier–Stokes equations computed on
structured and unstructured grids. It was shown that the scheme can recover the high-order accuracy of the underlying
DSEM for smooth solutions while ensuring robustness in the vicinity of shock waves and contact discontinuities,
with promising results in the ability to predict nonlinear flow phenomena such as flow instabilities and shock-vortex
interactions. Furthermore, the proposed modification of the entropy constraints showed significant improvements in
the ability of the method to accurately resolve species interfaces. Utilising the ability of the proposed framework to
robustly and accurately resolve multi-species fluid flows, future work will focus on extending the approach to nonlinear
equations of state and reacting multi-species flows.
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