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Abstract

Large-scale finite element simulations of complex
physical systems governed by partial differential
equations crucially depend on adaptive mesh re-
finement (AMR) to allocate computational budget
to regions where higher resolution is required.
Existing scalable AMR methods make heuristic
refinement decisions based on instantaneous error
estimation and thus do not aim for long-term op-
timality over an entire simulation. We propose a
novel formulation of AMR as a Markov decision
process and apply deep reinforcement learning
(RL) to train refinement policies directly from
simulation. AMR poses a new problem for RL
in that both the state dimension and available ac-
tion set changes at every step, which we solve by
proposing new policy architectures with differing
generality and inductive bias. The model sizes of
these policy architectures are independent of the
mesh size and hence scale to arbitrarily large and
complex simulations. We demonstrate in compre-
hensive experiments on static function estimation
and the advection of different fields that RL poli-
cies can be competitive with a widely-used error
estimator and generalize to larger, more complex,
and unseen test problems.

1. Introduction
Numerical simulation of partial differential equations
(PDEs) via the finite element method (FEM) (Brenner &
Scott, 2007) plays an integral role in computational science
and engineering (Reddy & Gartling, 2010; Zienkiewicz &
Taylor, 2005; Monk et al., 2003). Given a fixed set of basis
functions, the resolution of the finite element mesh deter-
mines the trade-off between solution accuracy and compu-
tational cost. For complex systems with large variations
in local solution characteristics, uniform meshes can be
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Figure 1: AMR viewed as a Markov decision process.

computationally inefficient due to their suboptimal distribu-
tion of mesh density, under-resolving regions with complex
features such as discontinuities or large gradients and over-
resolving regions with smoothly varying solutions. For
systems with multi-scale properties in particular, such as
cosmological hydrodynamics (Snaith et al., 2018), geophys-
ical flows (Burstedde, 2013), and plasma physics (Fujimoto,
2018), attempting to resolve these features with uniform
meshes can be challenging even on the largest supercom-
puters. To achieve more efficient numerical simulations,
adaptive mesh refinement (AMR), a class of methods that
dynamically adjust the mesh resolution during a simulation
to maintain equidistribution of error, is used to significantly
increase accuracy relative to computational cost.

Existing methods for AMR share the same iterative pro-
cess of computing a solution on the current mesh, esti-
mating refinement indicators, marking element(s) to refine,
and generating a new mesh by refinement of marked ele-
ments (Bangerth & Rannacher, 2013; Červený et al., 2019).
The optimal algorithms for error estimation and marking in
many problems, especially time-dependent PDEs, are not
known (Bohn & Feischl, 2019), and deriving them is diffi-
cult especially for complex refinement schemes such as hp-
refinement (Zienkiewicz et al., 1989). As such, the current
state-of-the-art is guided largely by heuristic principles that
are derived by intuition and expert knowledge, but choosing
the best combination of heuristics is complex and not well
understood. The scalable heuristic of pairing an effective
error estimator, such as the widely-used Zienkiewicz-Zhu
error estimator (Zienkiewicz & Zhu, 1992), with greedy
element selection at each step does not directly aim for
long-term optimality over the entire simulation. On the
other hand, goal-oriented methods (Becker & Rannacher,
2001) require complex adjoint solvers and checkpointing
mechanisms that limit their generality.
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We posit that adaptive mesh refinement is fundamentally a
sequential decision-making problem in which a sequence
of greedy decisions based on instantaneous error indicators
does not constitute an optimal sequence of decisions for
the actual goal of achieving high cumulative or terminal
accuracy. For example, in time-dependent problems such as
advection, an error estimator by itself cannot preemptively
refine elements which would encounter complex features in
the next time step. Moreover, the numerical error accumu-
lated at the current time step will itself propagate throughout
the physical system and determine how the error at future
time steps will accumulate. This means that the optimality
of a refinement decision depends on the accuracy of future
states and that selecting an element which yields the largest
reduction in error at the current time step may not be the op-
timal decision over the entire simulation. Whether and how
optimal AMR strategies can be found by directly optimizing
a long-term performance objective are open questions.

Given this viewpoint, we formulate AMR as a Markov deci-
sion process (MDP) (Puterman, 2014) (Figure 1) and pro-
pose a reinforcement learning (RL) (Sutton & Barto, 2018)
approach that explicitly trains a mesh refinement policy to
optimize a performance metric, such as minimizing final so-
lution error. In contrast to most, if not all, benchmark prob-
lems and complex applications of RL (Mnih et al., 2015;
Brockman et al., 2016; Osband et al., 2019; Berner et al.,
2019; Vinyals et al., 2019), AMR poses a new challenge
for learning a refinement policy: the sizes of both the input
state and the set of available actions depend on the current
number of mesh elements, which changes with each refine-
ment action at every MDP time step. While one may define
a fixed and bounded state and action space given a finite
refinement budget, doing so is very inefficient as the policy
model’s input-output dimensions would have to accommo-
date the full exponentially large space but only subspaces
(with increasing size) are encountered during simulation. In
many practical applications, one would routinely encounter
input dimensions on the order of millions or billions of
degrees of freedom. This motivates the design of efficient
policy architectures that leverage the known correspondence
between the current mesh state and valid action set.

We make the following conceptual, methodological, and
experimental contributions:
? 1) we formally define an MDP with variable-size state and
action spaces for AMR (Section 3.2);
? 2) we propose three policy architectures—with differ-
ing generality, inductive bias, and capacity for modeling
interaction—that operate on such state-action spaces of ar-
bitrary and variable size (Section 4);
? 3) as a path toward solving large and complex problems
on which RL cannot tractably be trained, we propose the
experimental approach of training on small representative

features with known analytic solutions and investigating the
generalizability of resulting policies;
? 4) our experiments on static function estimation and ad-
vection problems demonstrate for the first time that RL can
be competitive with, and sometimes outperform, a greedy
refinement strategy based on the widely-used Zienkiewicz-
Zhu error estimator; moreover, we show that an RL refine-
ment policy can generalize to higher refinement budgets and
initial mesh densities, and transfer effectively from static to
time-dependent problems (Section 6).

2. Related work
The formulation of problems in numerical analysis as statis-
tical learning problems can be traced at least as far in time
as to Poincaré (Poincaré, 1912; Diaconis, 1988). Contem-
porary works have employed neural networks as powerful
function approximators in existing numerical PDE and lin-
ear system solvers to achieve faster convergence rates, gen-
eralize to different boundary conditions or larger problems,
and approximate underresolved features in coarse-grained
simulations (Hsieh et al., 2019; Luz et al., 2020; Bar-Sinai
et al., 2019). Our work focuses on optimizing a finite ele-
ment space rather than components of a numerical solver.

To the best of our knowledge, no prior work has formulated
adaptive mesh refinement as a sequential decision-making
problem and proposed a reinforcement learning approach
(Sutton & Barto, 2018). Previous work at the intersection of
neural networks and mesh-based simulation trained neural
networks to predict mesh densities, sizes, or error fields
for use by downstream mesh generators (Dyck et al., 1992;
Chedid & Najjar, 1996; Zhang et al., 2020; Pfaff et al., 2020;
Chen & Fidkowski, 2020). Brevis et al. (2020) apply super-
vised learning to find an optimal parameterized test space
without modifying the degrees of freedom. Bohn & Feischl
(2019) show theoretically that the estimation and marking
steps of AMR for an elliptic PDE can be represented opti-
mally by a recurrent neural network, but model optimization
was left as an open question.

Recent studies have leveraged the effectiveness of graph
neural networks (GNN) (Sperduti & Starita, 1997; Gori
et al., 2005; Scarselli et al., 2008) at representing relational
structure to predict PDE dynamics on general unstructured
and non-uniform meshes (Alet et al., 2019; Belbute-Peres
et al., 2020; Pfaff et al., 2020). Previous work on graph
generation and formation have employed GNNs as the pol-
icy model in an RL context with applications to biological
and social network datasets (You et al., 2018; Trivedi et al.,
2020). To our knowledge, no prior work has investigated
the effectiveness of GNN-based policies for AMR.

Learning a policy for unbounded variable-size state and
action spaces is a new problem for RL, which has been typ-
ically applied to environments with fixed-size observation
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and small bounded action spaces in almost all benchmark
problems (Mnih et al., 2015; Brockman et al., 2016; Osband
et al., 2019). While there are notable applications where the
available action set varies with state (Berner et al., 2019;
Vinyals et al., 2019), they do not face the challenge of poten-
tially millions of possible actions that arises in large-scale
AMR. The curriculum learning technique of growing action
spaces (Farquhar et al., 2020) maintains a fixed action space
size within each episode. It is orthogonal to the AMR prob-
lem where both state and action space sizes change at every
time step within an episode.

3. Background and notation
3.1. Finite element method
Our mesh adaptation strategy is implemented in a FEM-
based framework (Brenner & Scott, 2007). In FEM, the
domain Ω ⊂ RD is modeled with a mesh that is a union of
E nonoverlapping subsets (elements) such that Ω :=

⋃
Ωk

where k ∈ N : k 6 E. The solution on these elements is
represented using polynomials (basis functions) which are
used to transform the governing equations into a system of
algebraic equations via the weak formulation.

For a given problem, it is well known that the accuracy
of the solution depends on the shape and size of the ele-
ments, and the computational cost of the solution process
depends on the number of elements in the mesh. AMR
is a commonly used approach to maximize the accuracy
of the solution and/or minimize the computational cost of
the calculation. The most ubiquitous method for AMR is
h-refinement, in which the shape of elements is modified
by splitting an element into smaller elements (refinement)
or coalescing multiple elements to form a single element
(derefinement). In practical applications where an exact
solution is not known, these refinement decisions are typi-
cally made using a posteriori error estimators which rely on
the numerical solution and its derived quantities obtained
on a given mesh. The conventional AMR approach with a
posteriori error estimators is to refine the element(s) with
the highest estimated error based on the current solution.
Therefore, these decisions are based on a greedy approach
without regard to the optimality of future refinement actions.

3.2. AMR as a Markov decision process
We formulate AMR with spatial h-refinement1 as a Markov
decision process M := (O, Nmax,A, R, P, γ) with each
component defined as follows. Consider a time step t when
the current mesh has Nt ≤ Nmax ∈ N elements. Each
element i is associated with an observation oit ∈ O and
the global state is st := [o1t , . . . , o

N
t ] ∈ ONt . We define

O := Rd such that each element’s observation is a tensor of
1Polynomial p-refinement can be formulated in a similar way.

r-refinement (Huang & Russell, 2010; Dobrev et al., 2019) is not
treated in this work.

shape d := l × w × c that includes the values, refinement
depths and (optionally) the gradients of a local window
centered on itself. For brevity, let St denote the current
global state spaceONt . We denote an action by at ∈ At :=
{0, 1, . . . , Nt} ⊂ A := {0, 1, . . . , Nmax}, where we let 0
denote the do-nothing action2. Given the current state and
action, the MDP transition P consists of:
? 1) refining the selected element into multiple fine ele-
ments (which increases Nt) if a refinement budget B is not
exceeded and the selected element is not at the maximum
refinement depth dmax;
? 2) stepping the finite element simulation forward in time
(for time-dependent PDEs only);
? 3) computing a solution on the new finite element space.
The reward at step t is defined as the change in error com-
pared to the previous step, normalized by the initial error to
reduce variation across classes of training functions:

rt := (‖et−1‖2 − ‖et‖2)/‖e0‖2 , (1)

where error e is computed relative to a ground truth solution.
The ground truth is only used in training and not needed to
deploy a trained policy on new test problems. With abuse
of notation, we shall use e to indicate the error norm. Our
objective to find a stochastic policy π : St → ∆(At) to
maximize the objective

J(π) := Ea∼π(·|s),st+1∼P (·|a,st)

[ ∞∑
t=0

γtrt

]
. (2)

Ignoring the discount factor γ ∈ (0, 1), this objective is
equivalent to maximizing total error reduction: e0 − efinal.

Despite the fact that the size of the state vector and set of
valid actions changes with each time step due to the varying
number of elements Nt, the MDP is well-defined since one
can define the global state space as the set of all possible
ON , N < Nmax, and likewise for the action space. Nonethe-
less, to our knowledge, such variation in state-action spaces
does not occur in any existing RL application. Moreover,
the exact 1:1 correspondence between the number of obser-
vation components and the number of valid actions calls for
designing a dedicated policy architecture for AMR, which
we present below in Section 4.

We work with the class of policy optimization methods as
they naturally admit stochastic policies that could benefit
AMR at test time: a stochastic refinement action could
reveal the need for further refinement in a region that appears
flat on a coarse mesh (e.g., Figure 2c). We build on the
policy gradient algorithm (Sutton et al., 2000) to train a
policy πθ (parameterized by θ) with Monte Carlo returns
using batches of trajectories {τb := {(st, at, rt)k}Tt=1}Kk=1

generated by the current policy.
2To impose a 1:1 map between each observation and possible

action, we append a dummy o0 to s corresponding to action 0. At
most one refinement is allowed per MDP step.
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4. Policy architectures for variable
state-action spaces

We propose three policy architectures that directly address
the challenge of variable size state vector s ∈ RNt×d and
action set {0, 1, . . . , Nt}, both of whose sizes changes with
number of elements Nt within an episode. These archi-
tectures are compatible with any stochastic policy gradient
algorithm. Our exposition focuses on the special case of
1:1 correspondence between the number of observations
that compose each global state and the number of available
actions at that state. Although not treated in this work, it
is straightforward to adapt these policy architectures to the
general case of 1:k correspondence—e.g., k = 2 whereby
each element may be refined or derefined.

We make two remarks for conceptual clarity. Firstly, h-
refinement constructs a refinement tree in simulation but
we do not employ this structure in our methods as there
is no indication from traditional AMR algorithms, which
do not store solutions at coarse elements, that hierarchical
information is useful for optimal refinement (Červený et al.,
2019). Secondly, the existence of a refinement tree has no
a priori relation to the class of Monte Carlo Tree Search
(MCTS) algorithms, which can optionally be combined with,
but is orthogonal to, RL (Silver et al., 2017).

4.1. Independent policy network
The first policy architecture, called Independent Policy Net-
work (IPN), handles the 1:1 correspondence by mapping
each observation to a probability for the corresponding ac-
tion. Let fθ : Rd 7→ R be a function parameterized by θ.
Given a matrix of observations s := [o1, . . . , oN ] ∈ RN×d,
we define the policy as

π(·|s) = softmax
(
fθ(o

1), . . . , fθ(o
N )
)
. (3)

For example, using a neural network with hidden layerW ∈
Rd×h with h nodes, output layer H ∈ Rh×1, and activa-
tion function σ, the discrete probability distribution over N
actions conditioned on s is defined by softmax (σ(sW )H).

This policy architecture scales to meshes of any size since
the set of trainable parameters θ is independent of N , but it
has two main limitations. Firstly, it makes a strong assump-
tion of locality as the action probability at an element i does
not involve any “cross terms” that depend on the observa-
tions at elements j, k 6= i. This assumption also appears in
existing AMR methods that estimate error independently
at each element; in fact, the output probabilities of IPN
may be viewed as normalized error estimates. Secondly, the
permutation equivariance of this architecture, i.e.,

π(aµ(i)|(oµ(1), . . . , oµ(N))) = π(ai|s)
for any permutation operator µ : [N ] 7→ [N ], means that its
behavior is independent of the ordering of input element
observations. This prevents one from using the ordering of
inputs to represent spatial relations among elements, which

would be necessary for a policy to refine an element based on
neighboring conditions. We address this problem by defin-
ing each element’s observation as an image tensor that in-
cludes neighborhood information and using a convolutional
network layer, but this may face difficulties on meshes with
non-quadrilateral elements and general manifold meshes.

4.2. Hypernetwork policy
We build on hypernetworks (Ha et al., 2017) to generalize
IPN to include higher-order interaction among inputs via
the function form

π(·|s) = softmax
(
fgφ(s)(o

1), ..., fgφ(s)(o
N )
)
. (4)

The main policy network weights θ are now the output of
a hypernetwork gφ : RN×d 7→ Rdim(θ), parameterized by φ,
which produces mixing among the inputs s ∈ RN×d. Con-
tinuing with the example in IPN, where the policy network’s
first layer is W ∈ Rd×h, a hypernetwork with two layers
can be instantiated as[

N∑
i=1

(sU) [i, :]

]
V = W , (5)

where U ∈ Rd×h1 and V ∈ Rh1×(d×h) are the trainable
parameters φ, and M [i, :] denotes the i-th row of matrix M .
The output W can then be used as part of θ in (3).

The hypernetwork policy’s increased generality comes at a
cost: the extent to which it captures interaction among inputs
depends on its architecture, which is difficult to choose
in advance. It does not contain an inductive bias for the
local nature of interactions seen in applications of AMR
to simulations of classical physics. In fact, the use of a
summation from i = 1 to N over the input dimension in
the example above means that complete global information
affects each local refinement decision, which may not be a
good inductive bias. It also inherits the difficulty of IPN in
capturing spatial information.

4.3. Graph network policy
We build on graph networks (Scarselli et al., 2008; Battaglia
et al., 2018) to address both the issue of interaction terms
and spatial relation among elements. Specifically, we con-
struct a policy based on Interaction Networks (Battaglia
et al., 2016), which is a special case without global at-
tributes3. At each step, the mesh is represented as a graph
G = (V,E). Each vertex vi in V = {vi}i=1:N corre-
sponds to element i and is initialized to be the observation
oi. E = {(ek, rk, sk)}k=1:Ne is a set of edges with at-
tributes ek between sender vertex sk and receiver vertex rk.
An edge exists between two vertices if and only if they are
spatially adjacent. We define the initial edge attribute ek as

3Global attributes arise in supervised learning applications
such as classification of a dataset of graphs. While not used in this
work, it is possible to use function coefficients and initial/boundary
conditions as global attributes in a graphnet policy for AMR.
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a one-hot vector indicator of the difference in refinement
depth between rk and sk.

Graph networks capture the relations between nodes and
edges via the inductive bias of its internal update rules. A
single forward pass through the graph policy involves one
or many rounds of message passing (Algorithm 1 in the
Appendix). Each round is defined by the following set of
simultaneous computations:
? 1) each edge attribute ek is updated by learned function
ϕe using local node information via êk ← ϕe(ek, vr

k

, vsk);
? 2) for each node i, we denote by Êi := {(êk, rk, sk)}rk=i
the set of all edges with node i as the receiver, and all
updated edge attributes are aggregated into a single fea-
ture ēi ← ρe→v(Êi) by aggregation function ρe→v (e.g.,
element-wise sum);
? 3) then the node attribute is updated by v̂i ← ϕv(ēi, vi)
using learned function ϕv . Each additional round increases
the size of the local neighborhood that determines node
attributes. Finally, we map each node attribute to a scalar
using learned function ψ and apply a global softmax over all
nodes and interpret the value at each node i as the probability
of choosing element i for refinement.

These update rules allow the graphnet policy to solve both
limitations of the IPN and the hypernetwork policy. Cross
terms arise in the forward pass due to mutual updates of
edge and node attributes using local information. The order
of cross terms increases with each message-passing round.
Local spatial relations between mesh elements are included
by construction in the initial edge attributes, so there is
no need to include numerical spatial information in each
element’s observation vector.

5. Experimental setup
Our experiments assess the ability of RL with the proposed
policy architectures to find AMR strategies in comparison
to canonical error estimators, generalize to test function
classes that differ from the train class, and generalize to
variable mesh sizes and refinement budgets. We define the
FEM environment in Section 5.1, the train-test procedure
in Section 5.2, and the implementation of our method and
baselines in Section 5.3. Results are analyzed in Section 6.

5.1. AMR environment
MFEM. We use MFEM (Anderson et al., 2021; MFEM), a
modular open-source C++ library for FEM, to implement
the MDP for AMR. The proposed methods are evaluated on
two classes of AMR problems: static and time-dependent.
In the static case, a variety of test functions (true solutions)
are projected onto a two-dimensional finite element space,
and a sequence of mesh refinements is performed to mini-
mize the L2 norm of the projection error onto the domain
[0, 1]2. Training RL policies to solve static problems is not

(a) Bumps (b) Circles (c) ZZ-fail

(d) Steps (e) Steps2

Figure 2: Individual samples from each true solution func-
tion class. Each function sampled in bumps and circles is
a superposition of a random number of such features in
general. Refinements shown here are produced by IPN.

an end in itself; instead, we posit and experimentally ver-
ify that policies trained on static features can be effectively
deployed on time-dependent problems whose dynamics pro-
duce such features. In the time-dependent case, the func-
tions are projected onto the finite element space, and the
linear advection equation, given by

∂u

∂t
+ ~c ·~∇u = 0,

where ~c = [1, 0] denotes the velocity vector, is solved on a
periodic domain using the finite element framework. The ad-
vection equation is used as there is an exact solution to pro-
vide a ground truth, whereas this is not generally available
for other PDEs. The solution is represented using continu-
ous (or discontinuous) second-order Bernstein polynomials
for the static (or time-dependent) case, and the initial mesh
is partitioned into nx × ny quadrilateral elements.

True solutions. Our work is guided by the vision that RL
policies that are trained on small representative features with
known analytic solutions have the potential to be deployed
on large and complex problems without known solutions.
As such, we defined a collection of parameterized function
classes (true solutions) from which we sample ground truth
functions f : [0, 1]2 7→ R with closed form for training and
testing. The collection includes: bumps, circles, steps, and
a pathological instance for existing error estimators that we
call ZZ-fail (Figure 2). The parameters of true solutions
are randomly initialized for each episode. Appendix A.1.2
contains precise definitions of each function class. These
function classes are exemplars of local features, including
sharp discontinuities and smooth variations, that arise in
real problems. Without analytic or ground truth solutions,
the alternative would be to run a reference simulation on a
highly-resolved mesh to compute the reward for training.

We use these true solutions in both static and advection ex-
periments. In the static case, the true solution is fixed and
each simulation time step is precisely an RL step in which
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the mesh is possibly modified. In the advection case, the
true solution is transported through the periodic domain and
the ratio of simulation time steps to RL steps is set such
that the solution returns to its original position after 10 RL
steps. Due to the Gibbs phenomena in FEM, using smooth
polynomial approximations to solve hyperbolic systems con-
taining discontinuities can introduce spurious oscillations
which, in turn, can cause the simulation to become unstable.
Therefore, we limit the true solutions to smooth functions
(e.g., bumps, circles) for the advection case.

5.2. Experiments and performance metric
We conducted the following experiments for both static and
advection cases to compare RL with baselines.

? 1) Train=test: train and test on true solutions sampled
from the same function class.

? 2) Multitask: train a single model on all function classes
and test on each individual class.

? 3) Static→advection: test static-trained policies on ad-
vection and compare to advection policies and baselines.

? 4) Budget↑: for a given function class and policies trained
with a small refinement budget B (20 on static and 10 on
advection), test with B = 50.

? 5) Density↑: for policies trained with an 8×8 initial mesh
partition, test on a 16 × 16 initial mesh partition without
changing the spatial scale of the true solutions.

? 6) Train6=test: we do not envision that one would train
and test on highly different function classes in real appli-
cations, but we performed such experiments and include
results in Appendix B.

We define the performance of a given refinement policy
in an episode in the static case as (einitial − efinal)/einitial,
where einitial (or efinal) is the error norm at the beginning
(or end) of an episode, to remove the variation in the error
due to different true solution classes and random function
initialization within each class. In the advection case, with-
out any refinement, the error may increase over the course
of the simulation due to the accumulation of discretiza-
tion error. Hence, given a refinement policy that achieves
efinal at the end of an episode, we define its performance as
(eno-refine, final − efinal)/einitial, where eno-refine, final is the error
at the end of an episode without any refinement.

We tuned hyperparameters for all policy architectures by
training on the multitask scenario; the procedure and chosen
values are given in Appendix A.3. The chosen hyperpa-
rameter values were used for all experiments. For every
experiment and every policy architecture, we trained four
independent policies with different random seeds. For each
test case, we report the mean and standard error—over the
four independent policies and with different simulator seeds

—of the average performance metric over 100 test episodes.
We ensure that whenever the errors of multiple methods are
compared during a test episode, that episode is initialized
with the same true solution for all methods.

5.3. Implementation and baselines
We describe the high-level implementation here and provide
complete details in Appendix A.2. All policy architectures
use a convolutional neural network with the same architec-
ture as their first input layer.

The IPN has two fully-connected hidden layers with h1 and
h2 nodes and ReLU activation, followed by a softmax output
layer. They act on each observation oi of each input state s
as described in Section 4.1. An efficient implementation for
computation on a batch of states, each with varying number
of observations, is described in Appendix A.2.

For the Graphnet policy, implemented with the Graph Nets
library (Battaglia et al., 2018), each input state consists of
node observation tensors, all edge vectors, and the adjacency
matrix. Node tensors are first passed through an Independent
block, after which multiple Interaction networks (Battaglia
et al., 2016) act on both node and edge embeddings to
produce a probability at each node (see Section 4.3).

The Hypernet policy is parameterized by matrices U ∈
Rd×h1 , V ∈ Rh1×(d×h), and y ∈ Rd,h. U and V act on
input state s to produce the main policy weights W ∈ Rd×h
(see Section 4.2) while y acts on s to produce a bias b ∈ Rh,
so that the main policy’s first hidden layer is ReLU(sW+b).
Output probabilities are computed in the same way as IPN.

Baselines. The ZZ policy uses the Zienkiewicz-Zhu er-
ror estimator (Zienkiewicz & Zhu, 1992) and refines the
element with the largest estimated error. The TrueError
policy refines the element where the error of the numerical
solution with respect to the true solution is largest. It is not
the theoretical upper bound on performance because refin-
ing the element with largest error does not necessarily result
in largest reduction of error. The GreedyOptimal policy
performs one-step lookahead by checking all possible out-
comes of refining each element individually and chooses the
element whose refinement would result in the lowest error at
the next step. In contrast to RL policies, TrueError cannot be
deployed at test time on systems without known solutions,
while GreedyOptimal is intractable for real applications.

6. Results
We find that the proposed methods achieve performance
that is competitive with baselines and, more importantly,
generalize well to increased refinement budgets and ini-
tial mesh densities, and transfer effectively from a static
problem to a time-dependent problem. Videos of poli-
cies and baselines on advection can be viewed at https:
//sites.google.com/view/icml2021-amr.

https://sites.google.com/view/icml2021-amr
https://sites.google.com/view/icml2021-amr
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(a) Static (b) Advection (c) Static→advection
Figure 3: Train=test and Static→advection. Performance of IPN, Graphnet and Hypernetwork policies versus baselines
(see Figure 14 for ZZ-fail). Higher values are better. (a,b) RL policies were trained and tested on the same function class, for
static and advection cases independently. (c) Static-trained policies on a function class are tested on advection of the same
function class. Performance in (c) can be directly compared with baselines in (b).

6.1. Static functions
Train=test (Figure 3a). RL policies either meet or sig-
nificantly exceed the performance of ZZ on all function
classes. Notably, both IPN and Graphnet outperform ZZ
significantly on steps by spending the limited refinement
budget only on regions with discontinuities (Figure 2d). On
the smoother function classes such as bumps where ZZ is
known to perform well, all three policy architectures have
comparable performance to ZZ. Overall, IPN outperforms
both Graphnet and Hypernet, while Hypernet performed
poorly (albeit still better than random) on all classes except
bumps. This suggests that capturing higher-order interaction
among observations, each of which already contains local
neighborhood information, is unnecessary for estimation of
static functions as they only have a local domain of influence.
Hypernetwork policies converged to the behavior of making
no refinements on at least one out of four independent runs
on all classes except bumps. This could be attributed to
our limited hyperparameter search or the inherent difficulty
of training the highly nonlinear model. All RL policies
achieved non-zero error reduction on ZZ-fail (Figures 2c
and 14) because exploration at train time and policy stochas-
ticity at test time enabled discovery (and hence refinement)
of elements that contain non-trivial features.

Multitask (Figure 4a). In the multitask training regime,
we see the expected decrease in performance compared
to dedicated policies trained separately on each function
class. While we did not find an RL policy that significantly
outperforms ZZ, our results may improved by equipping
the proposed policy architectures with a stronger base RL
algorithm than the simple policy gradient in this work (e.g.,
PPO (Schulman et al., 2017)) or building upon dedicated
multitask methods (Teh et al., 2017).

6.2. Advection
Train=test (Figure 3b). As explained above, we limit the
true solutions to smooth functions (bumps and circles) in
the advection case. Graphnet significantly outperformed ZZ
on circles and is comparable to TrueError on bumps, while

(a) Static (b) Advection

Figure 4: Multitask: Each policy was trained on all classes.

IPN is comparable to ZZ on both functions. Hypernet is
comparable to ZZ on circles but has high variance across
independent runs. Figure 5 reveals that Graphnet spends its
refinement budget more uniformly on a region of broader
width along the advection path and only reaches refinement
depth = 2 along a narrow segment travelled by the function
peak, whereas TrueError reaches refinement depth = 2
along a wider segment.

(a) Graphnet final mesh (b) TrueError final mesh

Figure 5: Graphnet trained with B = 20 outperforms
TrueError on advection with B = 50

Multitask (Figure 4b). IPN and Graphnet policies trained
on both bumps and circles outperformed ZZ on circles and
IPN is close to ZZ on bumps (Figure 4b). The fact that both
functions have smooth features and shapes is a likely reason
for the positive performance of a multitask policy.

6.3. Generalization
Static→advection (Figure 3c). All static-trained policies
demonstrated comparable performance to ZZ and TrueError
when tested on advection-bumps, while both IPN and Graph-
net significantly outperformed ZZ on advection-circles.
Surprisingly, static-trained IPN significantly outperforms
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advection-trained IPN when tested on advection-circles, and
the static-trained Hypernet does so as well on advection-
bumps, while static-trained Graphnet maintains comparable
performance to its advection-trained counterpart (Figure 3b
vs. Figure 3c). Figure 6 shows that a static-trained policy
on bumps with B = 10 correctly refines the region of prop-
agation when deployed on advection-bumps with B = 50.

t = 0 t = 22 t = 38 t = 50

Figure 6: Static→advection and Budget↑: IPN trained on
static bumps (B = 10) transfers to advection (B = 50).

(a) Static (b) Advection

Figure 7: Budget↑. Policies trained with budget B = 10
(static) and B = 20 (advection) are tested with B = 50.

Figure 8: IPN trained with refinement budget B = 10
generalizes to test case with B = 100.

Budget↑ (Figure 7). RL policies trained with low refine-
ment budget generalize to test cases with higher budget. In
the static case, comparing Figure 3a (B = 10) with Fig-
ure 7a (B = 50) shows that the performance of RL policies
relative to ZZ is generally preserved by the increase in re-
finement budget. Figures 8 and 11 show that an IPN trained
with B = 10 makes qualitatively correct refinement deci-
sions when allowed B = 100 during test. In the advection
case (Figure 7b), Graphnet trained with B = 20 signifi-
cantly outperforms both ZZ and TrueError when tested with
B = 50 on bumps and comes within the margin of error of
TrueError on circles. Figure 10 shows that an IPN trained
with B = 20 correctly allocates a higher budget B = 100
to the limited region of propagation.

Density↑ (Figure 9). In the static case, the relative perfor-
mance of RL policies that were trained with an 8× 8 initial

(a) Static (b) Advection

Figure 9: Density↑. Policies trained with initial 8× 8 mesh
were tested on initial 16× 16 mesh.

mesh (Figure 3a) is generally preserved when deployed on
a 16× 16 initial mesh (Figure 9a). All policy architectures
outperform ZZ on bumps, while IPN and Graphnet still out-
perform ZZ on steps. IPN and Graphnet were comparable
to ZZ on 8× 8 but underperformed on 16× 16 on circles.
Nonetheless, Figure 12 shows that IPN makes qualitatively
correct refinements. On advection, relative performance
is preserved on circles while IPN and Graphnet deproved
slightly on bumps. (Figure 3b vs. Figure 9b)

7. Conclusion and future work
We present a novel formulation of adaptive mesh refinement
as a Markov decision process with variable size state-action
sets and proposed new policy architectures for scalable appli-
cation of reinforcement learning. Our experiments on static
and time dependent problems demonstrate that RL policies
can outperform a policy based on the widely-used ZZ error
estimator. For time dependent problems, we demonstrated
that in some cases an RL policy can even outperform a pol-
icy that uses the exact true error at each time step to make
refinement decisions, suggesting that RL can potentially
provide efficiency gains beyond the reach of existing AMR
approaches. Additionally we demonstrated that these RL
policies can generalize to different refinement budgets and
initial mesh sizes, and transfer from static to time-dependent
settings. Moreover, because our RL approach does not re-
quire problem-specific knowledge or domain expertise, our
results provide a path for learning novel AMR strategies
for cases such as hp-refinement that currently lack effective
AMR solutions. These results encourage further research at
the intersection of RL and scientific computing.

Future work can build on our methods to tackle the limita-
tions of this paper. One may consider different objectives,
such as minimizing cumulative error or objectives arising
from PDE-constrained optimization. One can include dere-
finement actions by generalizing our policy architectures to
support a 1:2 correspondence between observation and ac-
tion sets. Sampling multiple elements to refine at each time
step is another open topic. It is also interesting to consider a
multi-agent perspective, whereby each element is viewed as
an agent and acts concurrently with all other agents.
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Algorithm 1 Graphnet policy forward pass

1: for each message-passing round do
2: for k ∈ {1, . . . , Ne} do
3: êk ← ϕe(ek, vr

k

, vs
k

) # Update edge attribute
4: end for
5: for i ∈ {1, . . . , N} do
6: Êi := {(êk, rk, sk)}rk=i # Edge set for vi

7: ēi ← ρe→v(Êi) # Aggregation for vi

8: v̂i ← ϕv(ēi, vi) # Update vertex attribute
9: end for

10: ek ← êk,∀k ∈ [Ne], vi ← v̂i,∀i ∈ [N ]
11: end for
12: R 3 xi ← ψ(vi),∀i ∈ [N ]
13: π(ai|s) is the i-th entry of softmax(x1, . . . , xN )

A. Experimental setup
A.1. Environment details

A.1.1. MFEMCTRL

To interface between the MFEM framework and the RL envi-
ronment, we developed MFEMCtrl, a C++/Python wrapper
for the AMR and FEM capabilities in MFEM. MFEMCtrl is
used to convert solutions to observations, apply refinement
decisions, and calculate errors.

The initial mesh is partitioned into nx×ny = 8×8 elements
for all experiments except for the generalization experiment
on increasing initial mesh density, where nx×ny = 16×16.
The true solution is projected onto the finite element space
by interpolation to the nodes of the Bernstein basis functions.
After each refinement action, the solution is projected again
onto the refined mesh (for the static case) or integrated in
time until the next refinement action (for the time-dependent
case). The maximum refinement depth of the mesh is fixed
by the parameter dmax such that the maximally-refined mesh
consists of 2dmaxnx×2dmaxny elements. For static cases, dmax
was set to 3 whereas the time-dependent cases used dmax = 2
due to the time step restrictions imposed by the Courant-
Friedrichs-Lewy (CFL) condition of the finest elements.

Observation. The observation consisted of the solution
and the depth of each element. Since the gradients of the
solution are, by definition, a function of the solution, the
observation does not include the gradients as they can be
implicitly learned. The solution/depth of each element was
observed by interpolating the functions to a local equis-
paced mesh (image) centered around each element, shown
by the white box in Figure 1. Each element’s observation
is a l × w × c tensor where l = w = lelement + 2lcontext is
the spatial observation window with lelement = 16 sampled
points inside the element and lcontext = 4 sampled points
in a coordinate direction outside the element. We chose
c = 2 channels so that estimated function values and ele-

Table 1: Parameterized true solutions

Parameter [min, max]

Bumps (static)

cx [0.2, 0.9]
cy [0.2, 0.9]
w [0.05, 0.2]
n {1, . . . , 6}

Bumps (advection)

cx [0.3, 0.7]
cy [0.3, 0.7]
w [0.005, 0.05]
n {1, . . . , 4}

Circles (static)

cx [0.2, 0.8]
cy [0.2, 0.8]
r [0.05, 0.2]
w [0.1, 1.0]
n {1, . . . , 6}

Circles (advection)

cx [0.3, 0.7]
cy [0.3, 0.7]
r [0.05, 0.2]
w [0.03, 0.05]
n {1, . . . , 4}

Steps and Steps2
o [0, 1.0]
θ [0, π/2]
n {1, . . . , 6}

ment depths are observed, while gradients are omitted since
the policy network can in principle estimate gradients from
the value channel.

A.1.2. GROUND TRUTH FUNCTIONS

Bumps

n ∼ Uniform[nmin, nmax]

cx,i ∼ Uniform[cx,min, cx,max], i = 1, . . . , n

cy,i ∼ Uniform[cy,min, cy,max], i = 1, . . . , n

wi ∼ Uniform[wmin, wmax], i = 1, . . . , n

f(x, y) =

n∑
i=1

exp

(
− (x− cx,i)2 + (y − cy,i)2

wi

)

Circles

n ∼ Uniform[nmin, nmax]

cx,i, cy,i ∼ Uniform[cmin, cmax], i = 1, . . . , n

ri ∼ Uniform[rmin, rmax], i = 1, . . . , n

wi ∼ Uniform[wmin, wmax], i = 1, . . . , n

f(x, y) =

n∑
i=1

exp

(
−

(
√

(x− cx,i)2 + (y − cy,i)2 − ri)2

wi

)
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Steps
n ∼ Uniform[nmin, nmax]

θ ∼ Uniform[θmin, θmax]

oi ∼ Uniform[omin, omax], i = 1, . . . , n

f(x, y) =

n∑
i=1

1 + tanh [100(oi − (x+ y tan θ))]

Steps2
n ∼ Uniform[nmin, nmax]

θi ∼ Uniform[θmin, θmax], i = 1, . . . , n

oi ∼ Uniform[omin, omax], i = 1, . . . , n

si := (x− 0.5) cos θi − (y − 0.5) cos θi

f(x, y) =
1

2

n∑
i=1

1 + tanh [100(si − oi)]

ZZ-fail
wx := sgn(sin 32πx)

wy := sgn(sin 32πy)

f(x, y) =

{
wxwy x < 0.5

0 else

A.2. Implementation

IPN. For efficient computation on a batch of B trajecto-
ries, where each trajectory b consists of T environment
steps and each step tb consists of a variable-sized global
state s ∈ RNtb×d, we merge the variable dimension with
the batch and time dimension to form an input matrix
whose dimensions are [

∑B
b=1

∑T
t=1Ntb , d]. The output

is reshaped into a “ragged” matrix of logits with dimensions
[B×T,Ntb ], where the row lengths vary for each batch and
time step. A softmax operation over each row produces the
final action probabilities at each step.

Graphnet policy. The first graph layer is an Independent
recurrent block that passes the input node tensors through a
convolutional layer followed by a fully-connected layer, to
arrive at node embeddings. This is followed by two recurrent
passes through an InterationNetwork (Battaglia et al., 2016)
where fully-connected layers are used for edge and node
update functions. A final InteractionNetwork output layer
followed by a global softmax over the graph produces a
scalar at each node, which is interpreted as the probability of
selecting the corresponding element for refinement. Except
for the input node feature vi ∈ Rd and output node scalar,
all internal node (edge) embeddings have the same size,
denoted as dim(v) (dim(e)). We fixed dim(e) = 16 for both
static and advection and tuned dim(v) (Table 2).

Hypernet policy. We fixed the main network’s hidden layer
dimension at h = 64 and tuned the hypernetwork’s hidden
layer dimension h1 (Table 2).

A.3. Hyperparameters

We tuned a subset of all hyperparameters for all methods
by the following procedure to handle the large set of
policy architectures and ground truth functions for both
static and advection problems. Chosen values of tuned
hyperparameters are given in Table 2; all other experimental
parameters have the same values for all methods and are
listed below. We conducted tuning on the “multienv” task,
in which we train a single policy on functions randomly
sampled from all ground truth classes, with randomly
sampled parameters according to Appendix A.1.2. This
is done separately on static and advection problems.
The tuning process is coordinate descent where the best
parameter from one sweep is used for the next sweep. We
start with exploration decay εdiv ∈ {100, 500, 1000, 5000}
(a lower bound on exploration was enforced by using
behavioral policy π̃(at|st) = (1− ε)π(at|st) + ε/Nt with
ε decaying linearly from εstart to εend by εdiv episodes). Next
we tune the size of hidden layers in the policy network (over
(h1, h2) ∈ {(128, 64), (256, 64), (128, 128), (256, 256)}
for IPN, node representation dimension dim(v) ∈
{32, 64, 128, 256} for Graphnet, and h1 ∈
{16, 32, 64, 128} for Hypernet). Lastly, we tune the
learning rate α ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3}.
For Graphnet and Hypernet, we inherit the best εdiv from
IPN because optimal exploration depends in large part
on the complexity of the environment, which is the same
across all policy architectures.

Separately for the static and advection cases, all three policy
architectures have the same values for all other experimental
parameters. These are: policy gradient batch size 8, initial
exploration lower bound εstart = 0.5, final exploration lower
bound εend = 0.05, discount factor γ = 0.99, convolutional
neural network layer with 6 filters of size (5, 5) and stride
(2, 2). We trained for 20k episodes on static problems and
10k episodes on advection problems. Each episode is ini-
tialized with refinement budget B, where B = 10 for static
problems and B = 20 for advection.

A.4. Computing infrastructure and runtime

Experiments were run on Intel 8-core Xeon E5-2670 CPUs,
using one core for each independent policy training session.
Average training time with 20k episodes in the static case
was approximately 6 hours for IPN and Hypernet, and 9
hours for Graphnet. Average training time with 10k episodes
in the advection case was approximately 14 hours for IPN
and Hypernet, and 18 hours for Graphnet. Policy decision
times are shown in Table 3.
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Table 2: Hyperparameters for IPN, Graphnet and Hypernet policies on static and advection AMR.

Static Advection

Parameter IPN Graphnet Hypernet IPN Graphnet Hypernet

εdiv 500 500 500 100 100 100
IPN (h1, h2) (128, 64) - - (256,256) - -
Graphnet dim(v) - 64 - - 256 -
Hypernet h1 - - 128 - - 32
α 10−4 10−4 5 · 10−5 10−4 10−4 10−4

Table 3: Mean (standard error) time in milliseconds per
refinement decision on 8× 8 and 16× 16 initial mesh parti-
tions.

8× 8 16× 16 24× 24

IPN 3.22 (0.07) 5.85 (0.05) 9.64 (0.28)
Graphnet 7.74 (0.33) 13.9 (0.43) 23.7 (0.19)
Hypernet 8.08 (0.08) 10.7 (0.05) 14.3 (0.17)
ZZ 1.96 (0.01) 6.94 (0.01) 15.5 (0.05)

t = 0 t = 32 t = 68 t = 100

Figure 10: Advection of a bump function. RL policy trained
with budget B = 20 generalizes to B = 100.

(a) Steps (b) Steps2 (c) ZZ-fail

Figure 11: Generalization of policies trained with refine-
ment budget B = 10 to test case with B = 100.

B. Additional results
Train6=test. In the static case (Figures 13a to 13c), IPN
policies trained on circles transfer well to bumps (and vice
versa). Hypernet policies performed poorly overall even
in the case of train=test, and consequently does not show
comparable performance when transferring across function
classes. In the advection case (Figures 13d to 13f), both
IPN and Graphnet policies trained on bumps significantly
outperformed ZZ when tested on circles (compare to ZZ in
Figure 3b).

(a) IPN (b) ZZ

Figure 12: IPN trained on 8×8 initial mesh underperformed
ZZ when tested on 16× 16 initial mesh but makes qualita-
tively correct refinements.

Figure 14: RL policies can reduce error in ZZ-fail.
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(a) Static IPN (b) Static Graphnet (c) Static Hypernet

(d) Advection IPN (e) Advection Graphnet (f) Advection Hypernet

Figure 13: All train-test combinations. Normalized error reduction of IPN, Graphnet and Hypernetwork policies on (a-c)
Static AMR and (d-f) Advection PDE. Higher values are better. Legend (colors) shows test classes. RL policies were trained
and tested on each combination of true solutions. Mean and standard error over four RNG seeds of mean final error over 100
test episodes per method.


