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In this study, higher-order flux reconstructionmethods are used to simulate the flow around
a medium and large-radius VFE-2 delta wing using PyFR. The objective of the study was to
validate the ability of higher-order methods to accurately predict blunt leading edge separation
and adequately resolve vortex dynamics and to compare this approach to standard Reynolds-
Averaged Navier-Stokes (RANS) approaches. Wall-resolved implicit large eddy simulations
with fourth-order spatial and temporal accuracy were validated against experimental data for
a medium-radius wing at a Reynolds number of 1 · 106 with very good agreement. Higher-
order simulations of a large-radius wing at a Reynolds number of 40,000 were then compared
to RANS simulations with two turbulence models. Noticeable differences in the computed
flow structures and turbulence quantities were observed between the three methods along with
minor differences in the predicted surface pressure distribution.

I. Nomenclature

α = angle of attack
c = root chord
CP = pressure coefficient
CPT = total pressure coefficient
η = nondimensional semispan
M = Mach number
Ω = vorticity tensor
Q = Q-criterion
Remac = Reynolds number with respect to mean aerodynamic chord
ρ = density
S = rate-of-strain tensor
TKE = turbulent kinetic energy
τ′ = Reynolds stress tensor
u = streamwise velocity component
U∞ = freestream velocity
v = vertical velocity component
w = spanwise velocity component
x = streamwise direction
y = vertical direction
z = spanwise direction

II. Introduction

Due to the demand for highly-maneuverable and agile aircraft, slender delta wings have been the subject of many
experimental and numerical studies owing to their desirable aerodynamic characteristics at high speeds and high

angles of attack. The flow field over a slender delta wing is dominated by a pair of primary vortices above the upper
surface of the wing caused by the separation of the flow near the leading edge. The entrainment and separation of the
fluid by the primary vortices give rise to secondary vortices outboard of the primary vortices. Likewise, this effect can
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cause the generation of tertiary vortices as a result of the secondary vortices. As the angle of attack is increased, the
strength of the vortices increases and the pressure at the upper surface of the wing decreases. When the angle of attack
becomes sufficiently high, vortex breakdown occurs with the rapid deceleration of the tangential and axial components
of the vortex flow and the expansion of the vortex core [1].

It is generally accepted that following the formation of the vortices at angles of attack prior to vortex breakdown,
vortex dynamics can be adequately modeled with inviscid nonlinear models. Inviscid flow solvers or underresolved
viscous flow solvers can be used to accurately compute the flow of the primary vortices for geometries for which
the separation line is fixed by geometric discontinuities (e.g. sharp leading edge). However, practical considerations
make the use of sharp leading edges in aircraft infeasible, and a rounded leading edge is required. Without geometric
discontinuities, the primary vortices of rounded leading edge delta wings are instead formed as a result of the separation
of the boundary layer near the leading edge, which leads to the roll-up of the shear layer and subsequent vortex formation.
This process is controlled by momentum transport, which is extremely sensitive to the Reynolds number; failure to
properly model this flow feature causes inaccurate predictions of the strength of the vortex system and the details of the
flow field, which may even lead to inaccurate calculation of the aerodynamic forces.

In an attempt to gain insight on the more complex flow physics of rounded leading edge delta wings, the Second
International Vortex Flow Experiment (VFE-2) was established consisting of a slender delta wing with 65◦ sweep
and varying leading edge radii. Chu & Luckring defined the wing geometry and performed the initial experiments at
the National Transonic Facility at NASA Langley [2]. Several groups have since then provided more comprehensive
experimental data for the VFE-2 configuration at varying Reynolds numbers, Mach numbers, leading edge radii, and
angles of attack [3–5]. These experiments serve to develop the understanding of vortex dominated flows and as a
validation for numerical tools. As such, a significant number of numerical studies have been performed on the VFE-2
configuration [6–10].

Computational fluid dynamics (CFD) methods based on steady Reynolds-Averaged Navier-Stokes equations (RANS)
are the prevailing model of choice in the industry. The system of RANS equations closed with well-calibrated turbulence
models such as the Spalart-Allmaras and Menter SST turbulence models is usually discretized using second order
numerical methods and integrated to a steady state [11, 12]. The use of lower-order methods introduces non-negligible
amounts of numerical dissipation in the solution. As such, the computed vorticity field is artificially diffused, and
the small-scale flow features such as secondary or tertiary vortices may not be adequately resolved. In addition, the
turbulence models most commonly used for closure assume the velocity fluctuation correlations are isotropic, an
assumption that is not justifiable for flows influenced by mean rotational effects as seen in the vortical structures over
delta wings. To remedy some of these shortcomings, recent research has been directed toward the development of
time resolved unsteady RANS (URANS) and Detached Eddy Simulation (DES) models [7, 9, 10]. But while URANS
and DES models may be able to improve the resolution of the flow physics away from solid walls, they are unable
to accurately predict the primary flow separation near rounded leading edges as shown by both Crippa & Rizzi and
Schiavetta, Badcock, & Cummings [9, 10].

Today’s availability of massively-parallel GPU computing and its consequent significant increase in computational
power allows for more accurate approaches to complex flow problems. Higher-order methods - defined as having an
order of accuracy of 3 or higher - have shown promise as a numerical tool for high-fidelity simulations since they are
less susceptible to the detrimental effects of excessive numerical dissipation on simulating fundamentally unsteady
vortex dominated flows. In addition, higher-order methods offer increased accuracy for the same degrees of freedom (i.e.
memory), an important feature in the limit of memory bandwidth constraints of GPU computing. A common approach
to higher-order methods in CFD has been with discontinuous finite element methods such as the discontinuous Galerkin
(DG) and flux reconstruction (FR) methods [13, 14]. These methods allow for an arbitrarily high order of accuracy that
can be efficiently implemented on the current generation of hierarchical memory high performance computing (HPC)
architectures.

In this work, higher-order methods based on flux reconstruction are used to simulate the flow around a medium-radius
and large-radius leading edge VFE-2 delta wing. The approach used is commonly known as implicit Large Eddy
Simulation (ILES) in which no subgrid-scale (SGS) model is explicitly added to the discretized Navier-Stokes equations
while subgrid modeling is accomplished by the numerical truncation error [15]. The approach is validated with
wall-resolved ILES results against experimental VFE-2 data obtained by the Institute of Aerodynamics (AER) of the
Technische Universität München (TUM) for the medium-radius leading edge at a Reynolds number of 1·106 based on
the mean aerodynamic chord [3]. Furthermore, wall-resolved ILES results are presented for the more complex flow
physics of the large-radius leading edge at a Reynolds number of 40,000 and the computed time-averaged flow structure
is compared with the results of RANS simulations.
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III. Computational Approach

A. Geometry and Flow Conditions
The geometry consisted of a VFE-2 delta wing with a leading edge radius to mean aerodynamic chord ratio of 0.15%

and 0.30% corresponding to the medium-radius and large-radius set, respectively, of the initial experimental data by
Chu & Luckring. The sting and fairing from the experimental model were not included. For the medium-radius, a
Reynolds number of 1·106 based on the mean aerodynamic chord and freestream viscosity was chosen with an angle of
attack of 18◦ corresponding to the TUM-AER experimental data for “fully-developed leading-edge vortices”. However,
the simulated Mach number (M = 0.2) was higher than the experimental Mach number (M = 0.07) to allow for efficient
use of the compressible solver.

For the large-radius, a Reynolds number of 40,000 based on the mean aerodynamic chord and freestream viscosity
was chosen as fully-resolved simulations at the experimental Reynolds number of 6·106 by Chu & Luckring were not
feasible. The flow conditions corresponding to the data set at a Mach number of 0.4 and an angle of attack of 12.3◦ were
applied. These conditions allowed for well-developed vortices while maintaining subsonic flow to avoid the detrimental
effects of shocks on solver stability and accuracy.

B. Solver
The compressible Navier-Stokes equations were solved using the flux reconstruction method in PyFR v1.7.5 with

fourth-order spatial and temporal accuracy using the Roe-FDS and LDG schemes [16–18]. The simulations were
impulsively started and run until a nondimensional time of 2.5, corresponding to two and a half flows over root
chord. The solution was approximated with P3 polynomials along Gauss-Legendre points for hexahedral elements and
quadrilateral faces and Williams-Shunn points for prismatic elements and triangular faces. Viscosity correction was
applied using Sutherland’s law. A wall-resolved ILES approach was used with no turbulence modeling, and an explicit
four-stage Runge-Kutta method was used for time stepping with nondimensional time steps of 1·10−7 and 8·10−7 for the
medium-radius and large-radius, respectively. Anti-aliasing by means of the L2 projection of the divergence flux with a
quadrature degree of 9 was used for stabilizing. A half delta wing was simulated with an inviscid wall symmetry plane.
Characteristic Riemann invariant boundary conditions were applied to the farfield, and the wing surface was assigned an
adiabatic no-slip wall boundary condition.

Solving was performed on the Tiger2 GPU cluster at the TIGRESS High Performance Computing Center at Princeton
University across 32 nVidia P100 GPUs with an estimated computing power of 150 double precision TFLOPs. The
solving time to complete two and a half flows over root chord was approximately 90 hours for the large-radius and 15
days for the medium-radius.

The results of the ILES solver for the large-radius were compared to the results of the steady-state compressible
RANS solutions given by ANSYS Fluent and STAR-CCM+. A second-order upwinding approach was used for both the
flow and turbulence variables, and Sutherland’s law was used for viscosity correction. The Menter SST turbulence
model was used with ANSYS Fluent as it behaves well within regions of separated flow and allows for direct comparison
of modeled turbulent kinetic energy to ILES resolved turbulent kinetic energy. The Elliptic Blending Reynolds Stress
Model (EBRSM) was used with STAR-CCM+ for comparison of the modeled and ILES resolved Reynolds stress
components [19].

Geometry Computational Method Remac M α

Medium-radius ILES (4th order) 1·106 0.2 18◦

Large-radius ILES (4th order) 40,000 0.4 12.3◦

Large-radius RANS-SST (2nd order) 40,000 0.4 12.3◦

Large-radius RANS-EBRSM (2nd order) 40,000 0.4 12.3◦

Table 1 Simulation test matrix
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C. Mesh

1. Higher-Order Mesh Elements
As higher-order finite element methods rely on increasing the order of the solution approximation within the element,

the mesh is significantly coarser than finite volume meshes of comparable accuracy. This coarsened mesh must still
accurately represent the geometry, or the benefits of higher-order methods are forfeited. Linear meshes, which represent
the geometry as first order C0 continuous curves, are adequate for finite volume methods as the second-order error
introduced by the linear representation of the geometry is of the same magnitude or lower as the solution error. For
higher-order methods with geometries where curvature plays a significant role on the flow field, higher-order mesh
elements must be used. These mesh elements are represented by polynomials of degree 2 or higher. Solution points
are then added along the higher-order polynomial curve, and the boundary conditions are enforced with respect to the
higher-order representation of the geometry, taking into account for the effects of curvature.

2. Mesh Generation
Three meshes were generated, two for the ILES solver (medium-radius and large-radius) and one for the RANS solvers

(large-radius). The wing surface mesh consisted of an unstructured flat-plate region and a structured leading/trailing
edge region. Edge biasing was performed towards the leading and trailing edges. The surface mesh was extruded
normal to the surface for the blunt wing up to 10% of the root chord to obtain a high-orthogonality prismatic/hexahedral
region near the wall. Subsequently, the mesh was extruded until the farfield along the coordinate axes. The farfield is
defined as x = [−10,15], y = [−15,15], z = [0,15] for a streamwise x direction and spanwise z direction.

For the ILES meshes, the wall-normal resolution was dictated by the size of the viscous sublayer: the first mesh cell
lies within y+ < 5 at all points along the wing surface based on the flat-plate boundary layer at the respective Reynolds
numbers with the first Gauss-Legendre solution point at y+ ≈ 1.5. As such, the ILES meshes were fully wall-resolved.
The y+ estimate was confirmed a posteriori with direct calculations of the wall shear stress. The wall-tangent mesh
sizing was dictated by the stability requirements of the ILES solver. Aspect ratios greater than approximately 10 in areas
of large gradients caused uncontrollable instabilities. With the P3 solution, the number of degrees of freedom of the
ILES meshes was approximately 16 million for the medium-radius and 25 million for the large-radius.

For the large-radius RANS mesh, due to the reduced computational resource requirements and number of solution
points, a significantly finer mesh was generated. The nodes of the RANS mesh were approximately equally spaced as
the solution points of the ILES mesh in the wall-tangential directions, but the wall-normal direction was significantly
more resolved with y+ < 1 based on a flat-plate boundary layer at Re = 40,000. However, even with the increased
wall resolution, the number of solution points, 12 million, was less than the ILES mesh as the RANS solvers were less
susceptible to cell growth rate driven instabilities.

For the ILES meshes, linear mesh elements were originally generated in Pointwise, and then the elements were
converted into second order elements with C1 continuity using meshCurve by a fourth-order interpolation of the
surrounding surface nodes [20]. Feature curves, acting as barriers to the interpolation stencil, were marked for the
trailing edges and the interface between the flat plate and leading/trailing edge region. For the RANS mesh, linear
elements were sufficient for the lower-order solvers.

D. Post-Processing and Data Analysis
Post-processing was performed in Paraview for field and cross-section data. After two nondimensional time units,

the flow was assumed to be fully developed. Statistical quantities were acquired and analyzed from 2 to 2.5 time units.
Pressure coefficient plots were obtained by interpolating the nearest solution points. Statistics on the turbulent behavior
of the flow were also gathered, particularly the six independent quantities of the Reynolds stress tensor

τ′ = ρ


u′u′ u′v′

′
u′w′

v′u′ v′v′ v′w′

w′u′ w′v′ w′w′

 , (1)

the turbulent kinetic energy (TKE)

TKE =
1
2
(u′

2
+ v′

2
+ w′

2
), (2)
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and the averaged root mean square (RMS) values of the velocity fluctuations

u′i ,RMS
=

√
u′2i (3)

where the subscript i denotes the component of the velocity vector. The turbulence statistics are plotted nondimensional-
ized by the freestream velocity and density. 1000 data samples were taken in the time range, which resulted in means of
the fluctuations that were strictly less than 1% of the maximum fluctuation for all sampled points. To visualize the
vortical flows, isovolumes of the Q-criterion were generated. The Q-criterion was calculated as

Q =
1
2
(|Ω|2 − |S |2) (4)

where Ω is the vorticity tensor and S is the rate-of-strain tensor.
For comparison of the simulation results and experimental data, the simulation results were transformed into

the coordinate system of the experimental data. For the velocity field visualization given by stereo particle image
velocimetry, the vertical velocity component is taken with respect to the wing surface normal, but for the turbulent flow
quantities given by hot-wire anemometry, the vertical velocity component is taken with respect to the freestream flow.
In this work, the vertical velocity component is denoted as v, whereas in the experiment it is denoted as w.

IV. Results

A. Medium-radius

1. Velocity Field

Fig. 1 Average streamwise velocity distribution with crossflow vectors for ILES (left) and experiment (right)
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The time-averaged flow field obtained with ILES at cross-sections x/c = 0.2, 0.4, 0.6, 0.8, and 0.95 is shown in Fig.
1 in comparison to the time-average experimental flow field with the contours of streamwise velocity and vector plots of
the spanwise and vertical velocity. For cross-sections x/c = 0.2, 0.4, and 0.6, the ILES results and experimental data
show great agreement in both the magnitude and lateral and vertical positioning of the region of increased streamwise
velocity corresponding to the primary vortex core. However, at cross sections x/c = 0.8 and 0.95, the ILES results show
a significant deceleration in the streamwise velocity in the vortex core and the elliptic deformation of the vortex core
which is characteristic of the onset of vortex breakdown, whereas in the experimental results, no such deceleration is
noticed. This is particularly evident at x/c = 0.95 where the axial velocity of the vortex core in ILES is underpredicted
by over a factor of 3 in comparison to the experimental results.

Although it initially appears as though the flow physics predicted by the ILES method significantly deviate from the
experiment near the trailing edge, it must be noted that in the experiment, the flow field at α = 18◦ was particularly
sensitive: the placement of a miniature hot-wire probe near the trailing edge could promote premature vortex breakdown.
It is feasible to assume that the sensitive nature of the flow conditions paired with the modified geometry in the trailing
edge region is the cause of the premature prediction of vortex breakdown.

2. Surface Streamlines and Pressure Coefficient Plots
The surface streamlines of the time-averaged ILES flow with contours of pressure coefficient is shown in Fig. 2 in

comparison to the experimental oil flow visualization. The ILES results and experimental data show notable similarities
in the rollup and positioning of the primary vortex and the separation line of the secondary vortex, as well as the width
of the primary vortex. In addition, the trailing edge separation is predicted in the same location with ILES as the
experiment. The ILES prediction of the primary vortex position shows good agreement with the experiment even in the
trailing edge region, indicating that the removal of the sting has minimal effect on the primary vortex position.

Fig. 2 Surface oil flow topology for ILES (left) and experiment (right)

A comparison of the pressure coefficient distribution at cross-sections x/c = 0.2, 0.4, 0.6, and 0.8 between the
time-averaged ILES results and the experiment is shown in Fig. 3. Most notably, the ILES method accurately predicted
the formation of the primary vortex and the lateral position of the vortex core at each streamwise station. The advantages
of the wall-resolved higher-order methods used in this work over conventional wall-modeled LES is particularly evident
with the accurate prediction of the formation of the primary vortex. At x/c = 0.2, the ILES results show very good
agreement with the experiment for the position of the primary vortex, whereas the vortex position in the wall-modeled
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LES approach in [21] deviated inboard of the experimental data by 20-50% of the local semispan.

(a) x/c = 0.2

(b) x/c = 0.4

(c) x/c = 0.6

(d) x/c = 0.8

Fig. 3 Time-averaged surface pressure coefficient distribution for ILES and experiment

However, although the predicted positioning of the vortex core is in very good agreement with the experiment, some
minor deviations in the predicted vortex strength are seen. At x/c = 0.2, the suction peak is underpredicted by roughly a
factor of 15%, whereas at x/c = 0.6, the suction peak is overpredicted by roughly a factor of 10%. These effects can be
attributed to the difference in Mach number between the simulation and the experiment. In [22], it was observed that at a
constant Reynolds number and angle of attack, an increase in Mach number delayed blunt leading-edge separation. The
difference in suction peak values at x/c = 0.2 can be attributed to a more developed primary vortex in the experiment as
a result of the lower Mach number. At x/c = 0.6, the deviation in suction peak values matched the trend observed in [3]
from comparison of experimental data at M = 0.14 and M = 0.2 at the same streamwise location. The increase in Mach
number caused a stronger suction peak and pushed the vortex core slightly outboard, similar to Fig. 3 (c).

3. Turbulent Flow Quantities
The time-averaged root mean square values of the three components of the velocity fluctuations at cross-section

x/c = 0.6 are shown in Fig. 4 for the ILES results and the experimental data. The predictions given by ILES were
in overall good agreement with the experiment in terms of magnitude and distribution, although some deviation was
seen with the spanwise velocity fluctuations. For the streamwise component, the experiment and the ILES results both
showed a region of high fluctuation intensity at the vortex core and a smaller region of high fluctuation intensity near
the leading edge. The high streamwise fluctuation intensity vortex core region was elliptically strecthed with ILES
in comparison to the circular region seen in the experiment. For the vertical component, the results given by ILES
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were nearly identical to the experiment with a small region of high fluctuation intensity at the vortex core, but the ILES
results contained another region of high vertical fluctuation intensity near the leading edge which was not observed in
the experimental data. For the spanwise component, the region of high fluctuation intensity given by ILES was larger
than the experiment, and the structure of the high fluctuation intensity region seen in the experiment akin to the rollup of
the primary vortex could not be distinguished.

(a) Streamwise velocity fluctuation RMS values (b) Vertical velocity fluctuation RMS values

(c) Spanwise velocity fluctuation RMS values

Fig. 4 Time-averaged turbulent fluctuation intensities for ILES (left) and experiment (right)

B. Large-radius

1. Q-criterion and Oil Flow
The computed average flow characteristics are shown with Q-criterion isovolumes and surface oil flow paths in Fig.

5 for the time-averaged ILES, RANS-SST, and RANS-EBRSM results. All three methods showed evident primary
and secondary vortex separation and reattachment lines as well as trailing edge separation in the oil flow paths. The
ILES oil flow showed tertiary vortex separation and reattachment lines whereas both RANS methods did not. The
separation line for the primary and secondary vortices was predicted in similar locations with ILES and RANS-EBRSM,
but was noticeably delayed with RANS-SST. The size of the primary vortex (visualized by the distance between the
primary vortex reattachment line and the secondary vortex separation line) predicted by ILES was more compact than
RANS-SST and of similar size to RANS-EBRSM. Conversely, the size of the secondary vortex predicted by ILES was
similar to RANS-SST and more compact than RANS-EBRSM. Trailing edge separation was predicted prematurely with
RANS-EBRSM and delayed with RANS-SST in comparison to ILES. Coherent primary and secondary vortices were
seen in the Q-criterion isovolumes for all three methods, but the primary vortex structure was more compact with ILES.
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(a) ILES - Averaged (b) RANS-SST (c) RANS-EBRSM

Fig. 5 Q-criterion isovolumes colored by CPT (left) and surface oil flow topology colored by CP (right)

Overall, better agreement was observed between ILES and RANS-EBRSM than with ILES and RANS-SST in terms of
flow structure and topology.

2. Total Pressure Cross-Sections

(a) ILES - Averaged (b) RANS-SST (c) RANS-EBRSM

Fig. 6 Contours of total pressure coefficient at cross-section x/c = 0.6

The total pressure coefficient at cross-section x/c = 0.6 is shown in Fig. 6 for the time-averaged ILES, RANS-SST,
and RANS-EBRSM methods. The flow fields computed by RANS-SST and RANS-EBRSM were nearly identical at
this streamwise position and significantly differed from the ILES flow field. The positioning of the primary vortex core
was similar between the three methods, although the flow fields computed by the RANS methods were more diffused
than the ILES flow field and appeared to laterally stretch the primary vortex. The secondary vortex was not distinct
and the tertiary vortex was not resolved in the RANS flow fields, whereas the ILES flow field distinctly resolved the
secondary vortex and showed signs of the formation of the tertiary vortex. The curvature of the shear layer rollup of the
secondary vortex was higher in the ILES flow field as a result of the lower pressures of the primary vortex core which
resulted in a difference in positioning of the secondary vortex.

3. Surface Pressure Coefficient Plots
A comparison of the surface pressure coefficient with respect to the local semispan η at cross-sections x/c = 0.2,

0.4, 0.6, and 0.8 is shown in Fig. 7 for the time-averaged ILES, RANS-SST, and RANS-EBRSM methods. At all
streamwise positions, the structure of the pressure coefficient distribution obtained by both RANS methods was similar,
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but the RANS-EBRSM method consistently predicted the pressure coefficient to be more negative than RANS-SST on
the suction side outboard of the primary vortex. At x/c = 0.2, the ILES and RANS-SST results were in very good
agreement, but the RANS-EBRSM results were offset by roughly a factor of 10% across the entire span on the suction
side. At the remaining streamwise positions, the primary vortex position was predicted at the same location by the
three methods. However, better agreement was seen in the primary vortex suction peak magnitude between ILES
and RANS-EBRSM at x/c = 0.4 and 0.6. At x/c = 0.8, the suction peak predicted by RANS-SST was closer to the
ILES results than RANS-EBRSM. Additionally, the presence of a secondary vortex is visible in the ILES pressure
coefficient distribution at x/c = 0.4, whereas it is not in the pressure coefficient distributions obtained by RANS-SST
and RANS-EBRSM.

(a) x/c = 0.2

(b) x/c = 0.4

(c) x/c = 0.6

(d) x/c = 0.8

Fig. 7 Surface pressure coefficient distribution for time-averaged ILES, RANS-SST, and RANS-EBRSM

4. Turbulent Kinetic Energy Cross-Sections
A comparison of the turbulent kinetic energy at cross-sections x/c = 0.8 and 0.95 is shown in Fig. 8 for the

time-averaged ILES, RANS-SST, and RANS-EBRSM methods. A significant difference in the TKE magnitude and
distribution was seen between the RANS and ILES results. With the RANS methods, the magnitude of TKE was
underestimated by a factor of two or more in comparison to ILES, with the most notable location being the primary
vortex core. At x/c = 0.8, the structure of the TKE field was similar between the methods, although the field was
significantly more diffused with RANS-SST than with ILES, and even more so with RANS-EBRSM. At x/c = 0.95,
a region of high TKE was located at the primary vortex core in the ILES cross-section which was not evident in
the cross-section from either RANS method, and the magnitude of TKE above the secondary vortex was severely
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(a) ILES - Averaged (b) RANS-SST (c) RANS-EBRSM

Fig. 8 Contours of turbulent kinetic energy at cross-sections x/c = 0.8 and 0.95

underpredicted by the RANS methods in comparison to ILES.

5. Reynolds Stress Cross-Sections
A comparison of the streamwise-spanwise (ρu′w′) Reynolds stress at cross-section x/c = 0.8 is shown in Fig. 9 for

the time-averaged ILES and RANS-EBRSM methods. The legend scale for the RANS-EBRSM contours is amplified
by a factor of 5 with respect to the ILES contours as the RANS-EBRSM Reynolds stress was underpredicted by over
an order of magnitude in comparison to ILES. A region of high positive Reynolds stress was seen in the ILES results
above the secondary vortex and in the boundary layer below the tertiary vortex, and a negative Reynolds stress region
was seen in the rollup of the primary vortex. The RANS-EBRSM results showed slight indication of the positive and
negative Reynolds stress regions of the secondary and primary vortices, respectively, but the magnitude was severely
underpredicted and the overall agreement was very poor.

(a) ILES - Averaged (b) RANS-EBRSM

Fig. 9 Contours of streamwise-spanwise Reynolds stress at cross-section x/c = 0.8
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V. Conclusion
Higher-order flux reconstruction methods were used to simulate the flow around medium-radius and large-radius

leading edge VFE-2 delta wings with implicit large eddy simulation. The results of the medium-radius simulation at a
Reynolds number of 1·106 were found to generally be in very good agreement with the experimental data, although the
onset of vortex breakdown was predicted at the trailing edge which was not observed in the experiment. Higher-order
ILES of a large-radius leading edge wing at a Reynolds number of 40,000 was then performed for comparison with
RANS methods closed with the SST and EBRSM turbulence models. As expected, flow features such as secondary and
tertiary vortices were not adequately resolved by RANS methods and the turbulence models severely underpredicted the
turbulence in the flow field. As evident in the oil flow paths and total pressure cross-sections, higher-order ILES methods
were able to resolve small-scale flow physics that RANS methods could not, but minimal differences in surface pressure
distribution were found. Although the complexities of high Reynolds number flow and the large-radius geometry were
explored independently, future work will address the more complex physics of the large-radius leading edge at high
Reynolds numberse once experimental data at computationally feasible flow conditions exists.

The results showed strong indication that higher-order ILES methods can provide significantly higher fidelity
simulations of vortex dominated flows than the industry standard RANS methods. However, the computational costs
involved with these higher-order methods are still prohibitively large for common industry use and suffer from distinct
drawbacks such as severe time step limitations at high Reynolds numbers for explicit schemes and poor multi-GPU
parallelizability due to high memory bandwidth requirements for implicit schemes. Advances in the efficiency of the
numerical algorithms must be made before higher-order methods become feasible for industry use.
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